Skip to main content

Imaging Inflammation

  • Chapter
  • First Online:
Nijkamp and Parnham's Principles of Immunopharmacology

Abstract

The cardinal features of inflammation were identified many centuries ago, and the subsequent demonstration of the cellular basis of these features first relied upon light microscopy and the development of histological processes. As the complexity of inflammation becomes more understood, tools are required to access ever smaller and deeper compartments of tissue, in vitro and in vivo, in animals and in man, at the same time maintaining specificity for the particular process under investigation. Whilst imaging modalities can rely solely upon the endogenous features of the tissue under investigation, commonly some form of contrast agent is added, and the qualities of the tissue, the imaging technique and the contrast agent can be exploited together to answer specific questions about inflammation.

Final manuscript submitted on April 18, 2018.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mankoff D. A definition of molecular imaging. J Nucl Med. 2007;48(18N):21N.

    Google Scholar 

  2. Weissleder R, Mahmood U. Molecular imaging. Radiology. 2001;219:316–33.

    Article  CAS  PubMed  Google Scholar 

  3. Miller JC, Thrall JH. Clinical molecular imaging. J Am Coll Radiol. 2004;1:4–23.

    Article  PubMed  Google Scholar 

  4. Pysz MA, Gambhir SS, Willmann JK. Molecular imaging: current status and emerging strategies. Clin Radiol. 2010;65:500–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huang B, Bates M, Zhuang X. Super-resolution fluorescence microscopy. Annu Rev Biochem. 2009;78:993–1016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Avlonitis N, Debunne M, Aslam T, et al. Highly specific, multi-branched fluorescent reporters for analysis of human neutrophil elastase. Org Biomol Chem. 2013;11:4414–8.

    Article  CAS  PubMed  Google Scholar 

  7. Akram AR, Avlonitis N, Lilienkampf A, et al. A labelled-ubiquicidin antimicrobial peptide for immediate in situ optical detection of live bacteria in human alveolar lung tissue. Chem Sci. 2015;6:6971–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ding S, Cargill A, Das S, et al. Biosensing with Förster resonance energy transfer coupling between fluorophores and nanocarbon allotropes. Sensors. 2015;15:14766–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Le Reste L, Hohlbein J, Gryte K, Kapanidis AN. Characterization of dark quencher chromophores as nonfluorescent acceptors for single-molecule FRET. Biophys J. 2012;102:2658–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Gehrig S, Mall MA, Schultz C. Spatially resolved monitoring of neutrophil elastase activity with ratiometric fluorescent reporters. Angew Chem Int Ed Engl. 2012;51:6258–61.

    Article  CAS  PubMed  Google Scholar 

  11. Hoshino A, Hanada S, Yamamoto K. Toxicity of nanocrystal quantum dots: the relevance of surface modifications. Arch Toxicol. 2011;85:707–20.

    Article  CAS  PubMed  Google Scholar 

  12. Oheim M, Michael DJ, Geisbauer M, et al. Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches. Adv Drug Deliv Rev. 2006;58:788–808.

    Article  CAS  PubMed  Google Scholar 

  13. Kreisel D, Nava RG, Li W, et al. In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation. Proc Natl Acad Sci U S A. 2010;107:18073–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grosberg LE, Radosevich AJ, Asfaha S, et al. Spectral characterization and unmixing of intrinsic contrast in intact normal and diseased gastric tissues using hyperspectral two-photon microscopy. PLoS One. 2011;6:e19925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stuker F, Ripoll J, Rudin M. Fluorescence molecular tomography: principles and potential for pharmaceutical research. Pharmaceutics. 2011;3:229–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ntziachristos V. Fluorescence molecular imaging. Annu Rev Biomed Eng. 2006;8:1–33.

    Article  CAS  PubMed  Google Scholar 

  17. Kossodo S, Zhang J, Groves K, et al. Noninvasive in vivo quantification of neutrophil elastase activity in acute experimental mouse lung injury. Int J Mol Imaging. 2011;2011:581406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ntziachristos V, Tung C-H, Bremer C, Weissleder R. Fluorescence molecular tomography resolves protease activity in vivo. Nat Med. 2002;8:757–61.

    Article  CAS  PubMed  Google Scholar 

  19. Larmann J, Frenzel T, Hahnenkamp A, et al. In vivo fluorescence-mediated tomography for quantification of urokinase receptor-dependent leukocyte trafficking in inflammation. Anesthesiology. 2010;113:1.

    Article  Google Scholar 

  20. Ntziachristos V, Bremer C, Weissleder R. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol. 2003;13:195–208.

    PubMed  Google Scholar 

  21. Movasaghi Z, Rehman S, Rehman IU. Raman spectroscopy of biological tissues. Appl Spectrosc Rev. 2007;42:493–541.

    Article  CAS  Google Scholar 

  22. Bauer M, Popp J. Toward a spectroscopic hemogram: Raman spectroscopic differentiation of the two most abundant leukocytes from peripheral blood. Anal Chem. 2012;84:5335–42.

    Article  PubMed  CAS  Google Scholar 

  23. Zoladek A, Pascut FC, Patel P, Notingher I. Non-invasive time-course imaging of apoptotic cells by confocal Raman micro-spectroscopy. J Raman Spectrosc. 2011;42:251–8.

    Article  CAS  Google Scholar 

  24. van Manen H-J, Kraan YM, Roos D, Otto C. Single-cell Raman and fluorescence microscopy reveal the association of lipid bodies with phagosomes in leukocytes. Proc Natl Acad Sci U S A. 2005;102:10159–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Napoléon B, Lemaistre A-I, Pujol B, et al. A novel approach to the diagnosis of pancreatic serous cystadenoma: needle-based confocal laser endomicroscopy. Endoscopy. 2014;47:26–32.

    Article  PubMed  Google Scholar 

  26. Thiberville L, Salaün M, Lachkar S, et al. Confocal fluorescence endomicroscopy of the human airways. Proc Am Thorac Soc. 2012;6:444–9.

    Article  Google Scholar 

  27. Craven T, Walton T, Akram A, et al. In-situ imaging of neutrophil activation in the human alveolar space with neutrophil activation probe and pulmonary optical endomicroscopy. Lancet. 2016;387:S31.

    Article  Google Scholar 

  28. Flusberg BA, Cocker ED, Piyawattanametha W, et al. Fiber-optic fluorescence imaging. Nat Methods. 2005;2:941–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gu M, Kang H, Li X. Breaking the diffraction-limited resolution barrier in fiber-optical two-photon fluorescence endoscopy by an azimuthally-polarized beam. Sci Rep. 2014;4:3627.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Helmchen F, Denk W, Kerr JND. Miniaturization of two-photon microscopy for imaging in freely moving animals. Cold Spring Harb Protoc. 2013;2013:904–13.

    Article  PubMed  Google Scholar 

  31. Santos LF, Wolthuis R, Koljenović S, et al. Fiber-optic probes for in vivo Raman spectroscopy in the high-wavenumber region. Anal Chem. 2005;77:6747–52.

    Article  CAS  PubMed  Google Scholar 

  32. Dochow S, Ma D, Latka I, et al. Combined fiber probe for fluorescence lifetime and Raman spectroscopy. Anal Bioanal Chem. 2015;407:8291–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. DĂĽrig U, Pohl DW, Rohner F. Near-field optical-scanning microscopy. J Appl Phys. 1986;59:3318.

    Article  Google Scholar 

  34. de Lange F, Cambi A, Huijbens R, et al. Cell biology beyond the diffraction limit: near-field scanning optical microscopy. J Cell Sci. 2001;114:4153–60.

    PubMed  Google Scholar 

  35. Huckabay HA, Armendariz KP, Newhart WH, et al. Near-field scanning optical microscopy for high-resolution membrane studies. Methods Mol Biol. 2013;950:373–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Blom H, Widengren J. STED microscopy—towards broadened use and scope of applications. Curr Opin Chem Biol. 2014;20:127–33.

    Article  CAS  PubMed  Google Scholar 

  37. Takasaki KT, Ding JB, Sabatini BL. Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy. Biophys J. 2013;104:770–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods. 2006;3:793–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Betzig E, Patterson GH, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006;313:1642–5.

    Article  CAS  PubMed  Google Scholar 

  40. Willig KI, Keller J, Bossi M, Hell SW. STED microscopy resolves nanoparticle assemblies. New J Phys. 2006;8:106.

    Article  Google Scholar 

  41. Cox S. Super-resolution imaging in live cells. Dev Biol. 2015;401:175–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Berger A. How does it work?: magnetic resonance imaging. BMJ. 2002;324:35.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Shokrollahi H. Contrast agents for MRI. Mater Sci Eng C Mater Biol Appl. 2013;33:4485–97.

    Article  CAS  PubMed  Google Scholar 

  44. Jin R, Lin B, Li D, Ai H. Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Curr Opin Pharmacol. 2014;18:18–27.

    Article  CAS  PubMed  Google Scholar 

  45. Metz S, Beer AJ, Settles M, et al. Characterization of carotid artery plaques with USPIO-enhanced MRI: assessment of inflammation and vascularity as in vivo imaging biomarkers for plaque vulnerability. Int J Cardiovasc Imaging. 2011;27:901–12.

    Article  PubMed  Google Scholar 

  46. Qi C, Deng L, Li D, et al. Identifying vulnerable atherosclerotic plaque in rabbits using DMSA-USPIO enhanced magnetic resonance imaging to investigate the effect of atorvastatin. PLoS One. 2015;10:e0125677.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Bull E, Madani SY, Sheth R, et al. Stem cell tracking using iron oxide nanoparticles. Int J Nanomedicine. 2014;9:1641–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Basu S, Zhuang H, Torigian DA, et al. Functional imaging of inflammatory diseases using nuclear medicine techniques. Semin Nucl Med. 2009;39:124–45.

    Article  PubMed  Google Scholar 

  49. He Z-X, Shi R-F, Wu Y-J, et al. Direct imaging of exercise-induced myocardial ischemia with fluorine-18-labeled deoxyglucose and Tc-99m-sestamibi in coronary artery disease. Circulation. 2003;108:1208–13.

    Article  CAS  PubMed  Google Scholar 

  50. Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA. A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology. 1975;114:89–98.

    Article  CAS  PubMed  Google Scholar 

  51. Nolting DD, Nickels ML, Guo N, Pham W. Molecular imaging probe development: a chemistry perspective. Am J Nucl Med Mol Imaging. 2012;2:273–306.

    PubMed  PubMed Central  Google Scholar 

  52. Vaidyanathan S, Patel CN, Scarsbrook AF, Chowdhury FU. FDG PET/CT in infection and inflammation-current and emerging clinical applications. Clin Radiol. 2015;70:787–800.

    Article  CAS  PubMed  Google Scholar 

  53. Hara T, Truelove J, Tawakol A, et al. 18F-fluorodeoxyglucose positron emission tomography/computed tomography enables the detection of recurrent same-site deep vein thrombosis by illuminating recently formed, neutrophil-rich thrombus. Circulation. 2014;130:1044–52.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Townsend DW, Cherry SR. Combining anatomy and function: the path to true image fusion. Eur Radiol. 2001;11:1968–74.

    Article  CAS  PubMed  Google Scholar 

  55. Dillman JR, Smith EA, Sanchez RJ, et al. Pediatric small bowel Crohn disease: correlation of US and MR enterography. Radiographics. 2015;35:835–48.

    Article  PubMed  Google Scholar 

  56. Gessner R, Dayton PA. Advances in molecular imaging with ultrasound. Mol Imaging. 2010;9:117–27.

    Article  PubMed  Google Scholar 

  57. Heidt T, Nahrendorf M. Multimodal iron oxide nanoparticles for hybrid biomedical imaging. NMR Biomed. 2013;26:756–65.

    Article  CAS  PubMed  Google Scholar 

  58. Nahrendorf M, Keliher E, Marinelli B, et al. Hybrid PET-optical imaging using targeted probes. Proc Natl Acad Sci U S A. 2010;107:7910–5.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Phillips E, Penate-Medina O, Zanzonico PB, et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci Transl Med. 2014;6:260ra149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Lee WW, Marinelli B, van der Laan AM, et al. PET/MRI of inflammation in myocardial infarction. J Am Coll Cardiol. 2012;59:153–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kim HS, Cho HR, Choi SH, et al. In vivo imaging of tumor transduced with bimodal lentiviral vector encoding human ferritin and green fluorescent protein on a 1.5T clinical magnetic resonance scanner. Cancer Res. 2010;70:7315–24.

    Article  CAS  PubMed  Google Scholar 

  62. Wang LV, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science. 2012;335:1458–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yang J-M, Favazza C, Chen R, et al. Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo. Nat Med. 2012;18:1297–302.

    Article  CAS  PubMed  Google Scholar 

  64. Zackrisson S, van de Ven SMWY, Gambhir SS. Light in and sound out: emerging translational strategies for photoacoustic imaging. Cancer Res. 2014;74:979–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Razansky D, Harlaar NJ, Hillebrands JL, et al. Multispectral optoacoustic tomography of matrix metalloproteinase activity in vulnerable human carotid plaques. Mol Imaging Biol. 2012;14:277–85.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano G. Rossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Craven, T.H., Potey, P.M.D., Dorward, D.A., Rossi, A.G. (2019). Imaging Inflammation. In: Parnham, M., Nijkamp, F., Rossi, A. (eds) Nijkamp and Parnham's Principles of Immunopharmacology. Springer, Cham. https://doi.org/10.1007/978-3-030-10811-3_18

Download citation

Publish with us

Policies and ethics