Skip to main content

Minimum Reload Cost Graph Factors

  • Conference paper
  • First Online:
SOFSEM 2019: Theory and Practice of Computer Science (SOFSEM 2019)

Abstract

The concept of Reload cost in a graph refers to the cost that occurs while traversing a vertex via two of its incident edges. This cost is uniquely determined by the colors of the two edges. This concept has various applications in transportation networks, communication networks, and energy distribution networks. Various problems using this model are defined and studied in the literature. The problem of finding a spanning tree whose diameter with respect to the reload costs is the smallest possible, the problems of finding a path, trail or walk with minimum total reload cost between two given vertices, problems about finding a proper edge coloring of a graph such that the total reload cost is minimized, the problem of finding a spanning tree such that the sum of the reload costs of all paths between all pairs of vertices is minimized, and the problem of finding a set of cycles of minimum reload cost, that cover all the vertices of a graph, are examples of such problems. In this work we focus on the last problem. Noting that a cycle cover of a graph is a 2-factor of it, we generalize the problem to that of finding an r-factor of minimum reload cost of an edge colored graph. We prove several NP-hardness results for special cases of the problem. Namely, bounded degree graphs, planar graphs, bounded total cost, and bounded number of distinct costs. For the special case of \(r=2\), our results imply an improved NP-hardness result. On the positive side, we present a polynomial-time solvable special case which provides a tight boundary between the polynomial and hard cases in terms of r and the maximum degree of the graph. We then investigate the parameterized complexity of the problem, prove W[1]-hardness results and present an FPT-algorithm.

Work supported by the bilateral research program CNRS/TUBITAK grant no. 114E731, TUBITAK 2221 programme. The last author was supported by projects “DEMOGRAPH” (ANR-16-CE40-0028) and “ESIGMA” (ANR-17-CE23-0010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Galbiati, G.: The complexity of a minimum reload cost diameter problem. Discrete Appl. Math. 156(18), 3494–3497 (2008)

    Article  MathSciNet  Google Scholar 

  2. Arkoulis, S., Anifantis, E., Karyotis, V., Papavassiliou, S., Mitrou, N.: On the optimal, fair and channel-aware cognitive radio network reconfiguration. Comput. Netw. 57(8), 1739–1757 (2013)

    Article  Google Scholar 

  3. Gözüpek, D., Buhari, S., Alagöz, F.: A spectrum switching delay-aware scheduling algorithm for centralized cognitive radio networks. IEEE Trans. Mob. Comput. 12(7), 1270–1280 (2013)

    Article  Google Scholar 

  4. Celik, A., Kamal, A.E.: Green cooperative spectrum sensing and scheduling in heterogeneous cognitive radio networks. IEEE Trans. Cogn. Commun. Netw. 2(3), 238–248 (2016)

    Article  Google Scholar 

  5. Wirth, H.C., Steffan, J.: Reload cost problems: minimum diameter spanning tree. Discrete Appl. Math. 113(1), 73–85 (2001)

    Article  MathSciNet  Google Scholar 

  6. Gourvès, L., Lyra, A., Martinhon, C., Monnot, J.: The minimum reload s-t path, trail and walk problems. Discrete Appl. Math. 158(13), 1404–1417 (2010)

    Article  MathSciNet  Google Scholar 

  7. Amaldi, E., Galbiati, G., Maffioli, F.: On minimum reload cost paths, tours, and flows. Networks 57(3), 254–260 (2011)

    Article  MathSciNet  Google Scholar 

  8. Galbiati, G., Gualandi, S., Maffioli, F.: On minimum changeover cost arborescences. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 112–123. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20662-7_10

    Chapter  Google Scholar 

  9. Gözüpek, D., Shalom, M., Voloshin, A., Zaks, S.: On the complexity of constructing minimum changeover cost arborescences. Theor. Comput. Sci. 540, 40–52 (2014)

    Article  MathSciNet  Google Scholar 

  10. Gözüpek, D., Shachnai, H., Shalom, M., Zaks, S.: Constructing minimum changeover cost arborescenses in bounded treewidth graphs. Theor. Comput. Sci. 621, 22–36 (2016)

    Article  MathSciNet  Google Scholar 

  11. Gözüpek, D., Özkan, S., Paul, C., Sau, I., Shalom, M.: Parameterized complexity of the mincca problem on graphs of bounded decomposability. Theor. Comput. Sci. 690, 91–103 (2017)

    Article  MathSciNet  Google Scholar 

  12. Gözüpek, D., Shalom, M.: Edge coloring with minimum reload/changeover costs. arXiv preprint arXiv:1607.06751 (2016)

  13. Gamvros, I., Gouveia, L., Raghavan, S.: Reload cost trees and network design. Networks 59(4), 365–379 (2012)

    Article  MathSciNet  Google Scholar 

  14. Meijer, H., Núñez-Rodríguez, Y., Rappaport, D.: An algorithm for computing simple k-factors. Inf. Process. Lett. 109(12), 620–625 (2009)

    Article  MathSciNet  Google Scholar 

  15. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, vol. 24. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  16. Galbiati, G., Gualandi, S., Maffioli, F.: On minimum reload cost cycle cover. Discrete Appl. Math. 164, 112–120 (2014)

    Article  MathSciNet  Google Scholar 

  17. Baste, J., Gözüpek, D., Shalom, M., Thilikos, D.M.: Minimum reload cost graph factors. CoRR abs/1810.11700 (2018). http://arxiv.org/abs/1810.11700

  18. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  19. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. TCS. Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

    Book  MATH  Google Scholar 

  20. Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems. J. Comput. Syst. Sci. 67(4), 757–771 (2003)

    Article  MathSciNet  Google Scholar 

  21. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single exponential time. In: Proceedings of the 52nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 150–159. IEEE Computer Society (2011)

    Google Scholar 

  22. Kloks, T. (ed.): Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0045375

    Book  MATH  Google Scholar 

  23. Pulleyblank, W.R.: Faces of matching polyhedra. Ph.D. thesis, University of Waterloo (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mordechai Shalom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baste, J., Gözüpek, D., Shalom, M., Thilikos, D.M. (2019). Minimum Reload Cost Graph Factors. In: Catania, B., Královič, R., Nawrocki, J., Pighizzini, G. (eds) SOFSEM 2019: Theory and Practice of Computer Science. SOFSEM 2019. Lecture Notes in Computer Science(), vol 11376. Springer, Cham. https://doi.org/10.1007/978-3-030-10801-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10801-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10800-7

  • Online ISBN: 978-3-030-10801-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics