A 116/13-Approximation Algorithm for L(2, 1)-Labeling of Unit Disk Graphs

  • Hirotaka OnoEmail author
  • Hisato YamanakaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11376)


Given a graph, an L(2, 1)-labeling of the graph is an assignment \(\ell \) from the vertex set to the set of nonnegative integers such that for any pair of vertices (uv), \(|\ell (u) - \ell (v)| \ge 2\) if u and v are adjacent, and \(\ell (u) \ne \ell (v)\) if u and v are at distance 2. The L(2, 1)-labeling problem is to minimize the span of \(\ell \) (i.e., \(\max _{u \in V}(\ell (u)) - \min _{u \in V}(\ell (u)) + 1\)). In this paper, we propose a new polynomial-time 116/13-approximation algorithm for L(2, 1)-labeling of unit disk graphs. This improves the previously best known ratio 12.


Frequency/channel assignment Graph algorithm L(2, 1)-labeling Approximation algorithm Unit disk graphs 


  1. 1.
    Bodlaender, H.L., Kloks, T., Tan, R.B., Van Leeuwen, J.: Approximations for \(\lambda \)-colorings of graphs. Comput. J. 47(2), 193–204 (2004)CrossRefGoogle Scholar
  2. 2.
    Breu, H., Kirkpatrick, D.G.: Unit disk graph recognition is NP-hard. Comput. Geom. 9(1), 3–24 (1998)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Calamoneri, T.: The \({L} (h, k)\)-labelling problem: an updated survey and annotated bibliography. Comput. J. 54(8), 1344–1371 (2011)CrossRefGoogle Scholar
  4. 4.
    Chang, G.J., Kuo, D.: The \({L}(2,1)\)-labeling problem on graphs. SIAM J. Discrete Math. 9(2), 309–316 (1996)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Math. 86(1), 165–177 (1990)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fiala, J., Fishkin, A.V., Fomin, F.: On distance constrained labeling of disk graphs. Theor. Comput. Sci. 326(1), 261–292 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fiala, J., Golovach, P.A., Kratochvíl, J.: Distance constrained labelings of graphs of bounded treewidth. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 360–372. Springer, Heidelberg (2005). Scholar
  8. 8.
    Fiala, J., Kloks, T., Kratochvíl, J.: Fixed-parameter complexity of \(\lambda \)-labelings. Discrete Appl. Math. 113(1), 59–72 (2001)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gonçalves, D.: On the \({L}(p,1)\)-labelling of graphs. Discrete Math. 308(8), 1405–1414 (2008). Third European Conference on CombinatoricsMathSciNetCrossRefGoogle Scholar
  10. 10.
    Griggs, J.R., Yeh, R.K.: Labelling graphs with a condition at distance 2. SIAM J. Discrete Math. 5(4), 586–595 (1992)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hale, W.K.: Frequency assignment: theory and applications. Proc. IEEE 68(12), 1497–1514 (1980)CrossRefGoogle Scholar
  12. 12.
    Hasunuma, T., Ishii, T., Ono, H., Uno, Y.: A linear time algorithm for \({L} (2, 1)\)-labeling of trees. Algorithmica 66(3), 654–681 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hasunuma, T., Ishii, T., Ono, H., Uno, Y.: Algorithmic aspects of distance constrained labeling: a survey. Int. J. Netw. Comput. 4(2), 251–259 (2014)CrossRefGoogle Scholar
  14. 14.
    Junosza-Szaniawski, K., Rzażewski, P., Sokół, J., Wesek, K.: Coloring and \(L(2, 1)\)-labeling of unit disk intersection graphs. In: European Workshop on Computational Geometry (EuroCG), pp. 83–86 (2016)Google Scholar
  15. 15.
    Koller, A.E.: The frequency assignment problem. Ph.D. thesis. Brunel University, School of Information Systems, Computing and Mathematics (2005)Google Scholar
  16. 16.
    Roberts, F.S.: \({T}\)-colorings of graphs: recent results and open problems. Discrete Math. 93(2), 229–245 (1991)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Shao, Z., Yeh, R.K., Poon, K.K., Shiu, W.C.: The \({L}(2,1)\)-labeling of \({K}_{1, n}\)-free graphs and its applications. Appl. Math. Lett. 21(11), 1188–1193 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Yeh, R.K.: A survey on labeling graphs with a condition at distance two. Discrete Math. 306(12), 1217–1231 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematical Informatics, Graduate School of InformaticsNagoya UniversityNagoyaJapan

Personalised recommendations