Skip to main content

On the Complexity of Color-Avoiding Site and Bond Percolation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11376))

Abstract

The mathematical analysis of robustness and error-tolerance of complex networks has been in the center of research interest. On the other hand, little work has been done when the attack-tolerance of the vertices or edges are not independent but certain classes of vertices or edges share a mutual vulnerability. In this study, we consider a graph and we assign colors to the vertices or edges, where the color-classes correspond to the shared vulnerabilities. An important problem is to find robustly connected vertex sets: nodes that remain connected to each other by paths providing any type of error (i.e. erasing any vertices or edges of the given color). This is also known as color-avoiding percolation.

In this paper, we study various possible modeling approaches of shared vulnerabilities, we analyze the computational complexity of finding the robustly (color-avoiding) connected components. We find that the presented approaches differ significantly regarding their complexity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Albert, R., Jeong, H., Barabási, A.-L.: Error and attack tolerance of complex networks. Nature 406(6794), 378 (2000)

    Article  Google Scholar 

  2. Barabási, A.-L., et al.: Network Science. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  3. Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network robustness and fragility: percolation on random graphs. Phys. Rev. Lett. 85(25), 5468 (2000)

    Article  Google Scholar 

  4. Dondi, R., Sikora, F.: Finding disjoint paths on edge-colored graphs: more tractability results. J. Comb. Optim. 36(4), 1315–1332 (2018)

    Article  MathSciNet  Google Scholar 

  5. Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Kcore organization of complex networks. Phys. Rev. Lett. 96(4), 040601 (2006)

    Article  Google Scholar 

  6. Gavril, F.: Intersection graphs of Helly families of subtrees. Discrete Appl. Math. 66(1), 45–56 (1996)

    Article  MathSciNet  Google Scholar 

  7. Gourves, L., Lyra, A., Martinhon, C.A., Monnot, J.: On paths, trails and closed trails in edge-colored graphs. Discrete Math. Theor. Comput. Sci. 14(2), 57–74 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Granata, D., Behdani, B., Pardalos, P.M.: On the complexity of path problems in properly colored directed graphs. J. Combin. Optim. 24(4), 459–467 (2012)

    Article  MathSciNet  Google Scholar 

  9. Hackett, A., Cellai, D., Gómez, S., Arenas, A., Gleeson, J.P.: Bond percolation on multiplex networks. Phys. Rev. X 6(2), 021002 (2016)

    Google Scholar 

  10. Kadović, A., Krause, S.M., Caldarelli, G., Zlatic, V.: Bond and site color-avoiding percolation in scale free networks. arXiv preprint arXiv:1807.08553 (2018)

  11. Kadović, A., Zlatić, V.: Color-avoiding edge percolation on edge-colored network. In: Complenet (2017)

    Google Scholar 

  12. Krause, S.M., Danziger, M.M., Zlatić, V.: Hidden connectivity in networks with vulnerable classes of nodes. Phys. Rev. X 6(4), 041022 (2016)

    Google Scholar 

  13. Krause, S.M., Danziger, M.M., Zlatić, V.: Color-avoiding percolation. Phys. Rev. E 96(2), 022313 (2017)

    Article  Google Scholar 

  14. Malaguti, E., Toth, P.: A survey on vertex coloring problems. Int. Trans. Oper. Res. 17(1), 1–34 (2010)

    Article  MathSciNet  Google Scholar 

  15. Newman, M.: Networks. Oxford University Press, Oxford (2018)

    Book  Google Scholar 

  16. Penrose, M.D.: On k-connectivity for a geometric random graph. Random Struct. Algorithms 15(2), 145–164 (1999)

    Article  MathSciNet  Google Scholar 

  17. Santos, R.F., Andrioni, A., Drummond, A.C., Xavier, E.C.: Multicolour paths in graphs: NP-hardness, algorithms, and applications on routing in WDM networks. J. Combin. Optim. 33(2), 742–778 (2017)

    Article  MathSciNet  Google Scholar 

  18. Shao, S., Huang, X., Stanley, H.E., Havlin, S.: Percolation of localized attack on complex networks. New J. Phys. 17(2), 023049 (2015)

    Article  MathSciNet  Google Scholar 

  19. Shekhtman, L.M., et al.: Critical field-exponents for secure message-passing in modular networks. New J. Phys. 20(5), 053001 (2018)

    Article  Google Scholar 

  20. Siganos, G., Faloutsos, M., Faloutsos, P., Faloutsos, C.: Power laws and the AS-level internet topology. IEEE/ACM Trans. Netw. (TON) 11(4), 514–524 (2003)

    Article  Google Scholar 

  21. Sipser, M.: Introduction to the Theory of Computation. Cengage Learning, Boston (2012)

    MATH  Google Scholar 

  22. Son, S.-W., Bizhani, G., Christensen, C., Grassberger, P., Paczuski, M.: Percolation theory on interdependent networks based on epidemic spreading. EPL (Europhys. Lett.) 97(1), 16006 (2012)

    Article  Google Scholar 

  23. Stauffer, D., Aharony, A.: Introduction to Percolation Theory: Revised Second Edition. CRC Press, Boca Raton (2014)

    Book  Google Scholar 

  24. Wu, B.Y.: On the maximum disjoint paths problem on edge-colored graphs. Discrete Optim. 9(1), 50–57 (2012)

    Article  MathSciNet  Google Scholar 

  25. Yuan, X., Dai, Y., Stanley, H.E., Havlin, S.: k-core percolation on complex networks: comparing random, localized, and targeted attacks. Phys. Rev. E 93(6), 062302 (2016)

    Article  Google Scholar 

  26. Zhao, L., Park, K., Lai, Y.-C., Ye, N.: Tolerance of scale-free networks against attack-induced cascades. Phys. Rev. E 72(2), 025104 (2005)

    Article  Google Scholar 

Download references

Acknowledgment

We thank Michael Danziger, Panna Fekete and Balázs Ráth for useful conversations. The research reported in this paper was supported by the BME- Artificial Intelligence FIKP grant of EMMI (BME FIKP-MI/SC). The publication is also supported by the EFOP-3.6.2-16-2017-00015 project entitled “Deepening the activities of HU-MATHS-IN, the Hungarian Service Network for Mathematics in Industry and Innovations” through University of Debrecen. The work of both authors is partially supported by the NKFI FK 123962 grant. R. M. is supported by NKFIH K123782 grant and by MTA-BME Stochastics Research Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Molontay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Molontay, R., Varga, K. (2019). On the Complexity of Color-Avoiding Site and Bond Percolation. In: Catania, B., Královič, R., Nawrocki, J., Pighizzini, G. (eds) SOFSEM 2019: Theory and Practice of Computer Science. SOFSEM 2019. Lecture Notes in Computer Science(), vol 11376. Springer, Cham. https://doi.org/10.1007/978-3-030-10801-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10801-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10800-7

  • Online ISBN: 978-3-030-10801-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics