Multi-stranded String Assembling Systems

  • Martin KutribEmail author
  • Matthias Wendlandt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11376)


Classical string assembling systems form computational models that generate strings from copies out of a finite set of assembly units. The underlying mechanism is based on piecewise assembly of a double-stranded sequence of symbols, where the upper and lower strand have to match. The generative power of such systems is driven by the power of the matching of the two strands. Here we generalize this approach to multi-stranded systems. The generative capacities and the relative power are our main interest. In particular, we consider briefly one-stranded systems and obtain that they describe a subregular language family. Then we explore the relations with one-way multi-head finite automata and show an infinite, dense, and strict strand hierarchy. Moreover, we consider the relations with the linguistic language families of the Chomsky Hierarchy and consider the unary variants of k-stranded string assembling systems.


  1. 1.
    Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)CrossRefGoogle Scholar
  2. 2.
    Bennett, C.H., Landauer, R.: The fundamental physical limits of computation. Sci. Am. 253, 48–56 (1985)CrossRefGoogle Scholar
  3. 3.
    Bordihn, H., Kutrib, M., Wendlandt, M.: Nonterminal controlled string assembling systems. J. Autom. Lang. Comb. 19, 33–44 (2014)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Freund, R., Păun, G., Rozenberg, G., Salomaa, A.: Bidirectional sticker systems. In: Pacific Symposium on Biocomputing (PSB 1998), pp. 535–546. World Scientific, Singapore (1998)Google Scholar
  5. 5.
    Hartmanis, J.: On non-determinancy in simple computing devices. Acta Inform. 1, 336–344 (1972)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hartmanis, J.: On the weight of computations. Bull. EATCS 55, 136–138 (1995)zbMATHGoogle Scholar
  7. 7.
    Kari, L., Păun, G., Rozenberg, G., Salomaa, A., Yu, S.: DNA computing, sticker systems, and universality. Acta Inform. 35, 401–420 (1998)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kutrib, M., Malcher, A., Wendlandt, M.: Set automata. Int. J. Found. Comput. Sci. 27, 187–214 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kutrib, M., Wendlandt, M.: String assembling systems. RAIRO Inform. Théor. 46, 593–613 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kutrib, M., Wendlandt, M.: Bidirectional string assembling systems. RAIRO Inform. Théor. 48, 39–59 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kutrib, M., Wendlandt, M.: Parametrizing string assembling systems. In: Câmpeanu, C. (ed.) CIAA 2018. LNCS, vol. 10977, pp. 236–247. Springer, Cham (2018). Scholar
  12. 12.
    McNaughton, R.: Algebraic decision procedures for local testability. Math. Syst. Theory 8, 60–76 (1974)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Boston (1994)zbMATHGoogle Scholar
  14. 14.
    Păun, G., Rozenberg, G.: Sticker systems. Theor. Comput. Sci. 204, 183–203 (1998)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing Paradigms. Texts in Theoretical Computer Science. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  16. 16.
    Rosenberg, A.L.: On multi-head finite automata. IBM J. Res. Dev. 10, 388–394 (1966)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Yao, A.C., Rivest, R.L.: \(k+1\) heads are better than \(k\). J. ACM 25, 337–340 (1978)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Zalcstein, Y.: Locally testable languages. J. Comput. System Sci. 6, 151–167 (1972)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für InformatikUniversität GiessenGiessenGermany

Personalised recommendations