Gathering of Robots in a Grid with Mobile Faults

  • Shantanu Das
  • Nikos Giachoudis
  • Flaminia L. Luccio
  • Euripides MarkouEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11376)


The gathering of two or more agents in a graph is an important problem in the area of distributed computing and has been extensively studied especially for the fault free scenario. In this paper we consider the mobile agents gathering problem in the presence of an adversarial malicious agent which by occupying an empty node might prevent honest agents from entering this node. The honest agents move in synchronous rounds and at each round an agent can move to an adjacent node only if this node is not occupied by the malicious agent. We model the honest agents as identical finite state automata moving in an anonymous oriented grid topology and having no information about the size of the graph, while the malicious agent is assumed to be arbitrarily fast and to have full knowledge of the locations and the strategy of the honest agents at all times. The agents cannot leave messages at nodes or communicate with each-other unless they meet at a node. Previous studies consider the problem for ring networks and for asynchronous grids, where rendezvous was solved only for the special case of agents starting already in connected configurations. In this paper, we study the problem for synchronous agents in anonymous oriented grid networks for any number of agents starting in distinct locations. We first show that rendezvous is impossible for 2 agents even when the agents can see the locations of each-other at all times, while 3 agents can gather if they have global visibility. We then present a universal deterministic algorithm that solves the problem for 4 or more agents having only local visibility and constant memory, in any oriented grid with a malicious mobile adversary.


  1. 1.
    Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM J. Comput. 36(1), 56–82 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bampas, E., Leonardos, N., Markou, E., Pagourtzis, A., Petrolia, M.: Improved periodic data retrieval in asynchronous rings with a faulty host. Theoret. Comput. Sci. 608, 231–254 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bouzid, Z., Das, S., Tixeuil, S.: Gathering of mobile robots tolerating multiple crash faults. In: ICDCS 2013, pp. 337–346 (2013)Google Scholar
  4. 4.
    Chalopin, J., Dieudonne, Y., Labourel, A., Pelc, A.: Rendezvous in networks in spite of delay faults. Distrib. Comput. 29, 187–205 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chuangpishit, H., Czyzowicz, J., Kranakis, E., Krizanc, D.: Rendezvous on a line by location-aware robots despite the presence of byzantine faults. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M.A., Zhang, Y. (eds.) ALGOSENSORS 2017. LNCS, vol. 10718, pp. 70–83. Springer, Cham (2017). Scholar
  6. 6.
    Czyzowicz, J., Killick, R., Kranakis, E., Krizanc, D., Morale-Ponce, O.: Gathering in the plane of location-aware robots in the presence of spies. In: Lotker, Z., Patt-Shamir, B. (eds.) SIROCCO 2018, pp. 361–376. Springer, Cham (2018). Scholar
  7. 7.
    Das, S., Focardi, R., Luccio, F.L., Markou, E., Moro, D., Squarcina, M.: Gathering of robots in a ring with mobile faults. In: 17th Italian Conference on Theoretical Computer Science (ICTCS 2016), Lecce, Italy. CEUR, vol. 1720, pp. 122–135, 7–9 September 2016Google Scholar
  8. 8.
    Das, S., Focardi, R., Luccio, F.L., Markou, E., Squarcina, M.: Gathering of robots in a ring with mobile faults. Theor. Comput. Sci. (in press).
  9. 9.
    Das, S., Luccio, F.L., Markou, E.: Mobile agents rendezvous in spite of a malicious agent. In: Bose, P., Gąsieniec, L.A., Römer, K., Wattenhofer, R. (eds.) ALGOSENSORS 2015. LNCS, vol. 9536, pp. 211–224. Springer, Cham (2015). Scholar
  10. 10.
    Di Luna, G.A., Flocchini, P., Pagli, L., Prencipe, G., Santoro, N., Viglietta, G.: Gathering in dynamic rings. Theor. Comput. Sci. (in press).
  11. 11.
    Dieudonne, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Trans. Algorithms 11(1), 1 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Multiple agents RendezVous in a ring in spite of a black hole. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS 2003. LNCS, vol. 3144, pp. 34–46. Springer, Heidelberg (2004). Scholar
  13. 13.
    Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Mobile search for a black hole in an anonymous ring. Algorithmica 48(1), 67–90 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Flocchini, P., Santoro, N.: Distributed security algorithms for mobile agents. In: Cao, J., Das, S.K. (eds.) Mobile Agents in Networking and Distributed Computing, pp. 41–70. Wiley, Hoboken (2012). Chap. 3CrossRefGoogle Scholar
  15. 15.
    Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Hardness and approximation results for black hole search in arbitrary graphs. TCS 384(2–3), 201–221 (2007)CrossRefGoogle Scholar
  16. 16.
    Lin, J., Morse, A.S., Anderson, B.D.O.: The multi-agent rendezvous problem. An extended summary. In: Kumar, V., Leonard, N., Morse, A.S. (eds.) Cooperative Control, vol. 309, pp. 257–289. Springer, Heidelberg (2004). Scholar
  17. 17.
    Luccio, F.L.: Contiguous search problem in Sierpinski graphs. Theory Comput. Syst. 44, 186–204 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Yamauchi, Y., Izumi, T., Kamei, S.: Mobile agent rendezvous on a probabilistic edge evolving ring. In: ICNC, pp. 103–112 (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shantanu Das
    • 1
  • Nikos Giachoudis
    • 2
  • Flaminia L. Luccio
    • 3
  • Euripides Markou
    • 2
    Email author
  1. 1.Aix-Marseille University, CNRS, LISMarseilleFrance
  2. 2.DCSBIUniversity of ThessalyLamiaGreece
  3. 3.DAISUniversità Ca’ Foscari VeneziaVeneziaItaly

Personalised recommendations