Skip to main content

Molecular Mapping and Gene Cloning of QTLs in Prunus mume

  • Chapter
  • First Online:
  • 391 Accesses

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Prunus is an economically important fruit tree genus and includes many stone fruit trees such as peach (Prunus persica Batsch), apricot, Japanese apricot (Prunus mume), sweet cherry (Prunus avium L.), European plum (Prunus domestica L.), Japanese plum (Prunus salicina Lindl.) and almond [Prunus dulcis (Mill.) D. A. Webb.]. The characterisation of genes associated with agriculturally important traits such as fruit ripening, dormancy, self-incompatibility, fruit quality and various other developmental processes is important to improve Prunus breeding programmes. Based on high-density molecular genetic maps, many genes are located on the genome, and subsequently, most of them were fine-mapped and further identified by positional cloning. Currently, with the availability of the P. mume genome sequence, the identification of new genes is significantly accelerated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Barba P, Cadle-Davidson L, Harriman J, Glaubitz JC, Brooks S, Hyma K et al (2014) Grapevine powdery mildew resistance and susceptibility loci identified on a high-resolution SNP map. Theor Appl Genet 127(1):73–84

    Article  CAS  Google Scholar 

  • Bielenberg DG, Wang YE, Li Z, Zhebentyayeva T, Fan S, Reighard GL et al (2008) Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes 4(3):495–507

    Article  Google Scholar 

  • Cooke JEK, Eriksson ME, Junttila O (2012) The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant, Cell Environ 35(10):1707–1728

    Article  CAS  Google Scholar 

  • Dirlewanger E, Pronier V, Parvery C, Rothan C, Guye A, Monet R (1998) Genetic linkage map of peach [Prunus persica (L.) Batsch] using morphological and molecular markers. Theor Appl Genet 97(5–6):888–895

    Article  CAS  Google Scholar 

  • Entani T, Iwano M, Shiba H, Che FS, Isogai A, Takayama S (2003) Comparative analysis of the self-incompatibility (S-) locus region of Prunus mume: identification of a pollen-expressed F-box gene with allelic diversity. Genes Cells 8(3):203–213

    Article  CAS  Google Scholar 

  • Fang J, Qiao Y, Zhang Z, Chao CT (2005) Genotyping fruiting mei (Prunus mume Sieb. et Zucc.) cultivars using amplified fragment-length polymorphism markers. Amer Soc Hort Sci 40(2):325–328

    CAS  Google Scholar 

  • Gao Z, Wang P, Zhuang W, Zhen Z (2012) Sequence analysis of new S-RNase and SFB alleles in Japanese Apricot (Prunus mume). Plant Mol Biol Rep 31(3):751–762

    Article  Google Scholar 

  • Gao ZH, Shen ZJ, Han ZH, Fang JG, Zhang YM, Zhang Z (2004) Microsatellite markers and genetic diversity in Japanese apricot (Prunus mume). HortScience 39(7):1571–1574

    Article  CAS  Google Scholar 

  • Gardner KM, Brown P, Cooke TF, Cann S, Costa F, Bustamante C et al (2014) Fast and cost-effective genetic mapping in apple using next-generation sequencing. G3: Genes Genomes Genetics 4(9):1681–1687

    Article  Google Scholar 

  • Habu T, Matsumoto D, Fukuta K, Esumi T, Tao R, Yaegaki H et al (2008) Cloning and characterization of twelve S-RNase alleles in Japanese apricot (Prunus mume Sieb. et Zucc.). J Jpn Soc Hort Sci 77(4):374–381

    Article  CAS  Google Scholar 

  • Hayashi K, Yoshida H, Ashikawa I (2006) Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes. Theor Appl Genet 113(2):251–260

    Article  CAS  Google Scholar 

  • Heng W, Wu HQ, Chen QX, Wu J, Huang SX, Zhang SL (2008) Identification of S-genotypes and novel S-RNasealleles in Prunus mume. J Hort Sci Biotechnol 83(6):689–694

    Article  CAS  Google Scholar 

  • Heng W, Wu J, Wu HQ, Tao ST, Qi KJ, Gu C et al (2012) Identification and characterisation of SFBs in Prunus mume. Plant Mol Biol Rep 30(4):878–884

    Article  CAS  Google Scholar 

  • Kitamura Y, Habu T, Yamane H, Nishiyama S, Kajita K, Sobue T et al (2018) Identification of QTLs controlling chilling and heat requirements for dormancy release and bud break in Japanese apricot (Prunus mume). Tree Genet Genomes 14(2):101

    Article  Google Scholar 

  • Kitamura Y, Takeuchi T, Yamane H, Tao R (2016) Simultaneous down-regulation of DORMANCY-ASSOCIATED MADS-box6 and SOC1 during dormancy release in Japanese apricot (Prunus mume) flower buds. J Hort Sci Biotechnol 91(5):476–482

    Article  CAS  Google Scholar 

  • Krawitz P, Rödelsperger C, Jäger M, Jostins L, Bauer S, Robinson PN (2010) Microindel detection in short-read sequence data. Bioinformatics 26(6):722–729

    Article  CAS  Google Scholar 

  • Li X, Shangguan L, Song C, Wang C, Gao Z, Yu H et al (2010) Analysis of expressed sequence tags from Prunus mume flower and fruit and development of simple sequence repeat markers. BMC Genet 11(1):66

    Article  Google Scholar 

  • Lv L, Huo X, Wen L, Gao Z, Khalil-Ur-Rehman M (2018) Isolation and role of PmRGL2 in GA-mediated floral bud dormancy release in Japanese apricot (Prunus mume Siebold et Zucc.). Front Plant Sci 9:27

    Article  Google Scholar 

  • Marquat C, Vandamme M, Gendraud M, Pétel G (1999) Dormancy in vegetative buds of peach: relation between carbohydrate absorption potentials and carbohydrate concentration in the bud during dormancy and its release. Sci Hortic 79:151–162. https://doi.org/10.1016/S0304-4238(98)00203-9

    Article  CAS  Google Scholar 

  • Mayer NA, Lemos EGD, Pereira FM, Wickert E (2008) Characterization of three mume genotypes (Prunus mume Sieb. et Zucc.) by RAPD markers. Reva Brasil Fruticult 30(4):1045–1050

    Article  Google Scholar 

  • Mita S, Kirita C, Kato M, Hyodo H (1999) Expression of ACC synthase is enhanced earlier than that of ACC oxidase during fruit ripening of mume (Prunus mume). Physiol Plant 107(3):319–328

    Article  CAS  Google Scholar 

  • Mita S, Nagai Y, Asai T (2006) Isolation of cDNA clones corresponding to genes differentially expressed in pericarp of mume (Prunus mume) in response to ripening, ethylene and wounding signals. Physiol Plant 128(3):531–545

    Article  CAS  Google Scholar 

  • Pan C-H, Li A-H, Dai Z-Y, Zhang H-X, Liu G-Q, Wang Z-B et al (2008) InDel and SNP markers and their applications in map-based cloning of rice genes. Rice Sci 15(4):251–258

    Article  Google Scholar 

  • Rinne PLH, Welling A, van der Schoot C (2009) Perennial life style of populus: dormancy cycling and overwintering. Genet Genomics Populus, Springer, New York, NY, USA, pp 171-200. http://link.springer.com/10.1007/978-1-4419-1541-2_9

    Google Scholar 

  • Ruttink T, Arend M, Morreel K, Storme V, Rombauts S, Fromm J et al (2007) A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell 19(8):2370–2390

    Article  CAS  Google Scholar 

  • Shen Y, Ding X, Wang F, Cai B, Gao Z, Zhang Z (2011) Analysis of genetic diversity in Japanese apricot (Prunus mume Sieb. et Zucc.) based on REMAP and IRAP molecular markers. Sci Hort 132:50–58

    Article  CAS  Google Scholar 

  • Shimada T, Haji T, Yamaguchi M, Takeda T, Nomura K, Yoshida M (1994) Classification of mume (Prunus mume Sieb. et Zucc.) by RAPD assay. J JPN Soc Hortic Sci 63(3):543–551

    Article  Google Scholar 

  • Sun L, Zhang Q, Xu Z, Yang W, Guo Y, Lu J et al (2013) Genome-wide DNA polymorphisms in two cultivars of mei (Prunus mume sieb. et zucc.). BMC Genet 14(1):98

    Article  Google Scholar 

  • Sun LD, Wang YQ, Yan XL, Cheng TR, Ma KF, Yang WR et al (2014) Genetic control of juvenile growth and botanical architecture in an ornamental woody plant, Prunus mume Sieb. et Zucc. as revealed by a high-density linkage map. BMC Genet 15(1):S1

    Article  Google Scholar 

  • Tao R, Habu T, Yamane H, Sugiura A, Iwamoto K (2000) Molecular markers for self-compatibility in Japanese apricot (Prunus mume). HortScience 35(6):1121–1123

    Article  CAS  Google Scholar 

  • Ushijima K, Yamane H, Watari A, Kakehi E, Ikeda K, Hauck NR et al (2004) The S haplotype-specific F-box protein gene, SFB, is defective in self-compatible haplotypes of Prunus avium and P-mume. Plant J 39(4):573–586

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Lee TVD, Hornes M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407–4414

    Article  CAS  Google Scholar 

  • Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R et al (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (Rin) locus. Science 296(5566):343–346

    Article  CAS  Google Scholar 

  • Wang PP, Gao ZH, Ni ZJ, Zhuang WB, Zhang Z (2013) Isolation and identification of new pollen-specific SFB genes in Japanese apricot (Prunus mume). Genet Mol Res 12(3):3286–3295

    Article  CAS  Google Scholar 

  • Wang PP, Shi T, Zhuang WB, Zhang Z, Gao ZH (2012) Determination of S-RNasegenotypes and isolation of four novel S-RNasegenes in Japanese apricot (Prunus mume Sieb. et Zucc.) native to China. J Hort Sci Biotechnol 87(3):266–270

    Article  CAS  Google Scholar 

  • Weber JL, May PE (1989) Abundant class of human dna polymorphisms which can be typed using the polymerase chain-reaction. Am J Hum Genet 44(3):388–396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wen LH, Zhong WJ, Huo XM, Zhuang WB, Ni ZJ, Gao ZH (2016) Expression analysis of ABA- and GA-related genes during four stages of bud dormancy in Japanese apricot (Prunus mume Sieb. et Zucc). J Hort Sci Biotechnol 91(4):362–369

    Article  CAS  Google Scholar 

  • Xu JX, Gao ZH, Zhang Z (2010) Identification of S-genotypes and novel S-RNase alleles in Japanese apricot cultivars native to China. Sci Hort 123(4):459–463

    Article  CAS  Google Scholar 

  • Yaegaki H, Shimada T, Moriguchi T, Haji T, Yamaguchi M, Hayama H (2001) Molecular characterization of S-RNase genes and S-genotypes in the Japanese apricot Prunus mume Sieb. et Zucc.). Sexual Plant Reprod 13(5):251–257

    Article  CAS  Google Scholar 

  • Yamane H (2014) Regulation of bud dormancy and bud break in Japanese apricot (Prunus mume Siebold. et Zucc.) and Peach [Prunus persica (L.) Batsch]: a summary of recent studies. J Jpn Soc Hort Sci 83(3):187–202

    Article  CAS  Google Scholar 

  • Yamane H, Fukuta K, Matsumoto D, Hanada T, Mei G, Esumi T et al (2009) Characterization of a novel self-compatible S3′ haplotype leads to the development of a Universal PCR marker for two distinctly originated self-compatible S haplotypes in Japanese Apricot (Prunus mume Sieb. et Zucc.). J Jpn Soc Hort Sci 78(1):40–48

    Article  CAS  Google Scholar 

  • Yamane H, Kashiwa Y, Ooka T, Tao R, Yonemori K (2008) Suppression subtractive hybridization and differential screening reveals endodormancy-associated expression of an SVP/AGL24-type MADS-box gene in lateral vegetative buds of japanese apricot. J Amer Soc Hort Sci 133(5):708–716

    Article  Google Scholar 

  • Yamane H, Ushijima K, Sassa H, Tao R (2003) The use of the S haplotype-specific F-box protein gene, SFB, as a molecular marker for S-haplotypes and self-compatibility in Japanese apricot (Prunus mume). Theor Appl Genet 107(8):1357–1361

    Article  CAS  Google Scholar 

  • Yang CD, Zhang JW, Yan XL, Bao MZ (2008) Genetic relatedness and genetic diversity of ornamental mei (Prunus mume Sieb. et Zucc.) as analysed by AFLP markers. Tree Genet Genomes 4(2):255–262

    Article  CAS  Google Scholar 

  • Zhang J, Zhang Q, Cheng T, Yang W, Pan H, Zhong J et al (2015) High-density genetic map construction and identification of a locus controlling weeping trait in an ornamental woody plant (Prunus mume Sieb. et Zucc). DNA Res 22(3):183–191. https://doi.org/10.1093/dnares/dsv003

    Article  CAS  Google Scholar 

  • Zhang J, Zhang Q, Yang W (2012a) Cloning and expression of CBF transcription factor from Prunus mume. Acta Bot Bor-Occ Sin 32(8):1505–1510

    CAS  Google Scholar 

  • Zhang J, Zhao K, Hou D, Cai J, Zhang Q, Cheng T et al (2017) Genome-wide discovery of DNA polymorphisms in Mei (Prunus mume Sieb. et Zucc.), an ornamental woody plant, with contrasting tree architecture and their functional relevance for weeping trait. Plant Mol Biol Rep 35(1):37–46

    Article  CAS  Google Scholar 

  • Zhang Q, Chen W, Sun L, Zhao F, Huang B, Yang W et al (2012b) The genome of Prunus mume. Nat Commun 3(1):1318

    Article  Google Scholar 

  • Zhao K, Zhou Y, Ahmad S, Xu Z, Li Y, Yang W et al (2018) Comprehensive cloning of Prunus mume dormancy associated MADS-Box genes and their response in flower bud development and dormancy. Front Plant Sci 9:457

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihong Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, Z., Ni, X. (2019). Molecular Mapping and Gene Cloning of QTLs in Prunus mume. In: Gao, Z. (eds) The Prunus mume Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-10797-0_6

Download citation

Publish with us

Policies and ethics