Skip to main content

Outlook and Conclusions

  • Chapter
  • First Online:
  • 423 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Three application ideas are derived from the knowledge and the achievements which have been accomplished through the experiments and simulations presented in the Chaps. 24 of this thesis. The author expects that each of them could be realized on the time scale of about one year.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Südmeyer, T., et al. (2008). Femtosecond laser oscillators for high-field science. Nature Photonics, 2, 599-604. https://doi.org/10.1038/nphoton.2008.194.

    Article  Google Scholar 

  2. Beetar, J . E., Gholam-Mirzaei, S., & Chini, M. (2018). Spectral broadening and pulse compression of a 400 \(\mu \)J, 20 W Yb:KGW laser using a multi-plate medium. Applied Physics Letters, 112, 051102. https://doi.org/10.1063/1.5018758.

    Article  ADS  Google Scholar 

  3. Herriott, D. R., & Schulte, H. J. (1965). Folded optical delay lines. Applied Optics, 4, 883–889. https://doi.org/10.1364/AO.4.000883.

    Article  ADS  Google Scholar 

  4. Brons, J., et al. (2017). Efficient, high-power, all-bulk spectral broadening in a quasi-waveguide. In 2017 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, CF–9.4. IEEE. https://doi.org/10.1109/CLEOE-EQEC.2017.8086741.

  5. Fritsch, K., Poetzlberger, M., Pervak, V., Brons, J., & Pronin, O. (2018). All-solid-state multipass spectral broadening to sub-20 fs. Optics Letters, 43, 4643–4646. https://doi.org/10.1364/OL.43.004643.

    Article  ADS  Google Scholar 

  6. Russbueldt, P., et al. (2015). Innoslab amplifiers. IEEE Journal of Selected Topics in Quantum Electronics, 21, 447–463. https://doi.org/10.1109/JSTQE.2014.2333234.

    Article  ADS  Google Scholar 

  7. Schulte, J., Sartorius, T., Weitenberg, J., Vernaleken, A., & Russbueldt, P. (2016). Nonlinear pulse compression in a multi-pass cell. Optics Letters, 41, 4511–4514. https://doi.org/10.1364/OL.41.004511.

    Article  ADS  Google Scholar 

  8. Hädrich, S., et al. (2015). Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources. Light: Science and Applications, 4, e320. https://doi.org/10.1038/lsa.2015.93.

    Article  Google Scholar 

  9. Brons, J., et al. (2016). Powerful 100-fs-scale Kerr-lens mode-locked thin-disk oscillator. Optics Letters, 41, 3567-3570. https://doi.org/10.1364/OL.41.003567.

    Article  ADS  Google Scholar 

  10. Krausz, F., & Ivanov, M. (2009). Attosecond physics. Reviews of Modern Physics, 81, 163–234. https://doi.org/10.1103/RevModPhys.81.163.

    Article  ADS  Google Scholar 

  11. Schiffrin, A., et al. (2013). Optical-field-induced current in dielectrics. Nature, 493, 70-74. https://doi.org/10.1038/nature11567.

    Article  ADS  Google Scholar 

  12. Krausz, F., & Stockman, M. I. (2014). Attosecond metrology: From electron capture to future signal processing. Nature Photonics, 8, 205–213. https://doi.org/10.1038/nphoton.2014.28.

    Article  ADS  Google Scholar 

  13. Paasch-Colberg, T., et al. (2016). Sub-cycle optical control of current in a semiconductor: From the multiphoton to the tunneling regime. Optica, 3, 1358-1361. https://doi.org/10.1364/OPTICA.3.001358.

    Article  Google Scholar 

  14. Ghimire, S., et al. (2011). Observation of high-order harmonic generation in a bulk crystal. Nature Physics, 7, 138–141. https://doi.org/10.1038/nphys1847.

    Article  ADS  Google Scholar 

  15. Schubert, O., et al. (2014). Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nature Photonics, 8, 119-123. https://doi.org/10.1038/nphoton.2013.349.

    Article  ADS  Google Scholar 

  16. Fortier, T. M., et al. (2004). Carrier-envelope phase-controlled quantum interference of injected photocurrents in semiconductors. Physical Review Letters, 92, 147403. https://doi.org/10.1103/PhysRevLett.92.147403.

    Article  ADS  Google Scholar 

  17. Hache, A., Sipe, J. E., & van Driel, H. M. (1998). Quantum interference control of electrical currents in gaas. IEEE Journal of Quantum Electronics, 34, 1144–1154. https://doi.org/10.1109/3.687857.

    Article  ADS  Google Scholar 

  18. Haché, A., et al. (1997). Observation of coherently controlled photocurrent in unbiased, bulk gaas. Physical Review Letters, 78, 306–309. https://doi.org/10.1103/PhysRevLett.78.306.

    Article  ADS  Google Scholar 

  19. Roos, P. A., Quraishi, Q., Cundiff, S. T., Bhat, R. D. R., & Sipe, J. E. (2003). Characterization of quantum interference control of injected currents in LT-GaAs for carrier-envelope phase measurements. Optics Express, 11, 2081–2090. https://doi.org/10.1364/OE.11.002081.

    Article  ADS  Google Scholar 

  20. Roos, P. A., et al. (2005). Solid-state carrier-envelope phase stabilization via quantum interference control of injected photocurrents. Optics Letters, 30, 735-737. https://doi.org/10.1364/OL.30.000735.

    Article  ADS  Google Scholar 

  21. Keiber, S., et al. (2014). Investigation of laser-induced currents in large-band-gap dielectrics. In 19th International Conference on Ultrafast Phenomena, 10.Thu.C.6. Optical Society of America. https://doi.org/10.1364/UP.2014.10.Thu.C.6.

  22. Kruchinin, S. Y., Korbman, M., & Yakovlev, V. S. (2013). Theory of strong-field injection and control of photocurrent in dielectrics and wide band gap semiconductors. Physical Review B, 87, 115201. https://doi.org/10.1103/PhysRevB.87.115201.

    Article  ADS  Google Scholar 

  23. Kazempour, A. (2015). Quasiparticle lifetimes in rutile and anatase TiO\(_2\): GW approximation. Physica Scripta, 90, 025804. http://stacks.iop.org/1402-4896/90/i=2/a=025804.

    Article  ADS  Google Scholar 

  24. Haas, J., & Mizaikoff, B. (2016). Advances in mid-infrared spectroscopy for chemical analysis. Annual Review of Analytical Chemistry, 9, 45–68. https://doi.org/10.1146/annurev-anchem-071015-041507.

    Article  ADS  Google Scholar 

  25. Cossel, K. C., et al. (2017). Gas-phase broadband spectroscopy using active sources: Progress, status, and applications (invited). Journal of the Optical Society of America B, 34, 104–129. https://doi.org/10.1364/JOSAB.34.000104.

    Article  Google Scholar 

  26. Pupeza, I., et al. (2017). Field-resolved spectroscopy in the molecular fingerprint region. In 2017 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, CH–2.4. IEEE, Munich. https://doi.org/10.1109/CLEOE-EQEC.2017.8086859.

  27. Keiber, S., et al. (2016). Electro-optic sampling of near-infrared waveforms. Nature Photonics, 10, 159-162. https://doi.org/10.1038/nphoton.2015.269.

    Article  ADS  Google Scholar 

  28. Pupeza, I., et al. (2015). High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate. Nature Photonics, 9, 721–724, Letter. https://doi.org/10.1038/nphoton.2015.179.

    Article  ADS  Google Scholar 

  29. Lanin, A. A., Voronin, A. A., Fedotov, A. B., & Zheltikov, A. M. (2014). Time-domain spectroscopy in the mid-infrared. Scientific Reports, 4, 6670. https://doi.org/10.1038/srep06670.

    Article  ADS  Google Scholar 

  30. Wu, Q., & Zhang, X.-C. (1995). Free-space electro-optic sampling of Terahertz beams. Applied Physics Letters, 67, 3523–3525. https://doi.org/10.1063/1.114909.

    Article  ADS  Google Scholar 

  31. Lee, K. F., Kubarych, K. J., Bonvalet, A., & Joffre, M. (2008). Characterization of mid-infrared femtosecond pulses (invited). Journal of the Optical Society of America B, 25, A54–A62. https://doi.org/10.1364/JOSAB.25.000A54.

    Article  ADS  Google Scholar 

  32. Rogalski, A. (2012). History of infrared detectors. Opto-Electronics Review, 20, 279–308. https://doi.org/10.2478/s11772-012-0037-7.

    Article  ADS  Google Scholar 

  33. Habel, F., & Pervak, V. (2017). Dispersive mirror for the mid-infrared spectral range of 9–11.5 \(\mu \)m. Applied Optics, 56, C71–C74. https://doi.org/10.1364/AO.56.000C71.

    Article  Google Scholar 

  34. Huber, M., et al. (2017). Active intensity noise suppression for a broadband mid-infrared laser source. Optics Express, 25, 22499-22509. https://doi.org/10.1364/OE.25.022499.

    Article  ADS  Google Scholar 

  35. Prinz, S., et al. (2014). Active pump-seed-pulse ynchronization for OPCPA with sub-2-fs residual timing jitter. Optics Express, 22, 31050–31056. https://doi.org/10.1364/OE.22.031050.

    Article  ADS  Google Scholar 

  36. Manzoni, C., et al. (2012). Coherent synthesis of ultra-broadband optical parametric amplifiers. Optics Letters, 37, 1880–1882. https://doi.org/10.1364/OL.37.001880.

    Article  ADS  Google Scholar 

  37. Xin, M., et al. (2017). Attosecond precision multi-kilometer laser-microwave network. Light: Science and Applications, 6, e16187. https://doi.org/10.1038/lsa.2016.187.

    Article  Google Scholar 

  38. Walbran, M., Gliserin, A., Jung, K., Kim, J., & Baum, P. (2015). 5-femtosecond laser-electron synchronization for pump-probe crystallography and diffraction. Physical Review Applied, 4, 044013. https://doi.org/10.1103/PhysRevApplied.4.044013.

    Article  ADS  Google Scholar 

  39. Bauer, D., Zawischa, I., Sutter, D . H., Killi, A., & Dekorsy, T. (2012). Mode-locked Yb:YAG thin-disk oscillator with 41 \(\mu \)J pulse energy at 145 W average infrared power and high power frequency conversion. Optics Express, 20, 9698–9704. https://doi.org/10.1364/OE.20.009698.

    Article  ADS  Google Scholar 

  40. Saraceno, C. J., et al. (2012). 275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment. Optics Express, 20, 23535-23541. https://doi.org/10.1364/OE.20.023535.

    Article  ADS  Google Scholar 

  41. Brons, J., et al. (2014). Energy scaling of Kerr-lens mode-locked thin-disk oscillators. Optics Letters, 39, 6442–6445. https://doi.org/10.1364/OL.39.006442.

    Article  ADS  Google Scholar 

  42. Saraceno, C. J., et al. (2014). Ultrafast thin-disk laser with 80 \(mu \)J pulse energy and 242 W of average power. Optics Letters, 39, 9-12. https://doi.org/10.1364/OL.39.000009.

    Article  ADS  Google Scholar 

  43. Seidel, M., et al. (2017). Efficient high-power ultrashort pulse compression in self-defocusing bulk media. Scientific Reports, 7, 1410. https://doi.org/10.1038/s41598-017-01504-x.

    Article  ADS  Google Scholar 

  44. Spectra-Physics. FemtosourceXL. Retrieved April 10, 2017 from http://www.spectra-physics.com/products/ultrafast-lasers/femtosource-xl.

  45. Zhang, J., et al. (2018). Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm\(^{-1}\). Light: Science & Applications, e17180. https://doi.org/10.1038/lsa.2017.180.

    Article  ADS  Google Scholar 

  46. Fattahi, H., et al. (2016). High-power, 1-ps, all-Yb:YAG thin-disk regenerative amplifier. Optics Letters, 41, 1126-1129. https://doi.org/10.1364/OL.41.001126.

    Article  ADS  Google Scholar 

  47. Nubbemeyer, T., et al. (2017). 1 kW, 200 mJ picosecond thin-disk laser system. Optics Letters, 42, 1381–1384. https://doi.org/10.1364/OL.42.001381.

    Article  ADS  Google Scholar 

  48. Znakovskaya, I., et al. (2014). Dual frequency comb spectroscopy with a single laser. Optics Letters, 39, 5471-5474. https://doi.org/10.1364/OL.39.005471.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Seidel .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seidel, M. (2019). Outlook and Conclusions. In: A New Generation of High-Power, Waveform Controlled, Few-Cycle Light Sources. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-10791-8_5

Download citation

Publish with us

Policies and ethics