Skip to main content

From the Near- to the Mid-Infrared

  • Chapter
  • First Online:
  • 522 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The previous chapters of this dissertation have demonstrated the progress in the development of KLM TD oscillators towards waveform control and few-cycle operation. So-far all research was concentrated on the optical octave from about 700–1400 nm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Parts of Sect. 4.1.1 have been published in Ref. [27]: M. Seidel, X. Xiao, S.A. Hussain, G. Arisholm, A. Hartung, K.T. Zawilski, P.G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, F. Krausz, http://dx.doi.org/10.1126/sciadv.aaq1526“Multi-Watt, multi-octave, mid-infrared femtosecond source,” Science Advances 4, eaaq1526 (2018).

  2. 2.

    Parts of Sect. 4.1.2 have been published in Ref. [27]: M. Seidel, X. Xiao, S.A. Hussain, G. Arisholm, A. Hartung, K.T. Zawilski, P.G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, F. Krausz, http://dx.doi.org/10.1126/sciadv.aaq1526 “Multi-Watt, multi-octave, mid-infrared femtosecond source,” Science Advances 4, eaaq1526 (2018).

  3. 3.

    Parts of Sect. 4.1.3 have been published in Ref. [21]: I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, http://dx.doi.org/10.1038/nphoton.2015.179“High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate.” Nat. Photon. 9, 721 (2015).

References

  1. Brons, J., et al. (2014). Energy scaling of Kerr-lens mode-locked thin-disk oscillators. Optics Letters, 39, 6442–6445. https://doi.org/10.1364/OL.39.006442.

    Article  ADS  Google Scholar 

  2. Saraceno, C. J., et al. (2012). 275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment. Optic Express, 20, 23535–23541. https://doi.org/10.1364/OE.20.023535.

    Article  ADS  Google Scholar 

  3. Russbueldt, P., et al. (2015). Innoslab amplifiers. IEEE Journal of Selected Topics in Quantum Electronics, 21, 447–463. https://doi.org/10.1109/JSTQE.2014.2333234.

    Article  ADS  Google Scholar 

  4. Müller, M., et al. (2016). 1 kW 1 mJ eight-channel ultrafast fiber laser. Optics Letter, 41, 3439–3442. https://doi.org/10.1364/OL.41.003439.

    Article  ADS  Google Scholar 

  5. Zhang, J. Multi-m W, et al. (2018). few-cycle mid-infrared continuum spanning from 500 to 2250 cm\(^{-1}\). Light: Science & Applications e17180,. https://doi.org/10.1038/lsa.2017.180.

    Article  Google Scholar 

  6. Stutzki, F., et al. (2014). 152 W average power Tm-doped fiber CPA system. Optics Letter, 39, 4671–4674.

    Article  ADS  Google Scholar 

  7. Vasilyev, S., Moskalev, I., Mirov, M., Mirov, S., & Gapontsev, V. (2016). Multi-watt mid-ir femtosecond polycrystalline Cr\(^{ 2+}\): Zns and Cr\(^{ 2+}\): Znse laser amplifiers with the spectrum spanning 2.0 \(mu \)m - 2.6 \(mu \)m. Optics Express, 24, 1616–1623. https://doi.org/10.1364/OE.24.001616.

    Article  ADS  Google Scholar 

  8. Antipov, S., Hudson, D. D., Fuerbach, A., & Jackson, S. D. (2016). High-power mid-infrared femtosecond fiber laser in the water vapor transmission window. Optica, 3, 1373–1376. https://doi.org/10.1364/OPTICA.3.001373.

    Article  Google Scholar 

  9. Haas, J., & Mizaikoff, B. (2016). Advances in Mid-Infrared Spectroscopy for Chemical Analysis. Annual Review of Analytical Chemistry, 9, 45–68. https://doi.org/10.1146/annurev-anchem-071015-041507.

    Article  ADS  Google Scholar 

  10. Cossel, K. C., et al. (2017). Gas-phase broadband spectroscopy using active sources: progress, status, and applications (invited). Journal of the Optical Society of America B, 34, 104–129. https://doi.org/10.1364/JOSAB.34.000104.

    Article  Google Scholar 

  11. Baker, M. J., et al. (2014). Using Fourier transform IR spectroscopy to analyze biological materials. Nature Protocols, 9, 1771–91. https://doi.org/10.1038/nprot.2014.110.

    Article  Google Scholar 

  12. Schliesser, A., Picque, N., & Hänsch, T. W. (2012). Mid-infrared frequency combs. Nature Photonics, 6, 440–449. https://doi.org/10.1038/nphoton.2012.142.

    Article  ADS  Google Scholar 

  13. Zhu, J., Mathes, T., Stahl, A. D., Kennis, J. T., & Groot, M. L. (2012). Ultrafast mid-infrared spectroscopy by chirped pulse upconversion in 1800–1000cm\(^{-1}\) region. Optics Express, 20, 10562–10571. https://doi.org/10.1364/OE.20.010562.

    Article  ADS  Google Scholar 

  14. Tidemand-Lichtenberg, P., Dam, J. S., Andersen, H. V., Høgstedt, L., & Pedersen, C. (2016). Mid-infrared upconversion spectroscopy. Journal of the Optical Society of America B, 33, D28–D35. https://doi.org/10.1364/JOSAB.33.000D28.

    Article  Google Scholar 

  15. Hamm, P., & Zanni, M. (2011). Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University, Cambridge. UK,. https://doi.org/10.1017/CBO9780511675935.

  16. Lee, K. F., Kubarych, K. J., Bonvalet, A., & Joffre, M. (2008). Characterization of mid-infrared femtosecond pulses (invited). Journal of the Optical Society of America B, 25, A54–A62. https://doi.org/10.1364/JOSAB.25.000A54.

    Article  ADS  Google Scholar 

  17. Lanin, A. A., Voronin, A. A., Fedotov, A. B., & Zheltikov, A. M. (2014). Time-domain spectroscopy in the mid-infrared. Scientific Reports, 4, 6670. https://doi.org/10.1038/srep06670.

    Article  ADS  Google Scholar 

  18. Popmintchev, T., et al. (2012). Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science, 336, 1287–1291. https://doi.org/10.1126/science.1218497.

    Article  ADS  MathSciNet  Google Scholar 

  19. Schubert, O., et al. (2014). Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nature Photonics, 8, 119–123. https://doi.org/10.1038/nphoton.2013.349.

    Article  ADS  Google Scholar 

  20. Hohenleutner, M., et al. (2015). Real-time observation of interfering crystal electrons in high-harmonic generation. Nature, 523, 572–5. https://doi.org/10.1038/nature14652.

    Article  ADS  Google Scholar 

  21. Pupeza, I., et al. (2015). High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate. Nature Photonics, 9, 721–724. https://doi.org/10.1038/nphoton.2015.179. Letter.

    Article  ADS  Google Scholar 

  22. Rogalski, A. (2012). History of infrared detectors. Opto-Electronics Review, 20, 279–308. https://doi.org/10.2478/s11772-012-0037-7.

    Article  ADS  Google Scholar 

  23. Maidment, L., Zhang, Z., Howle, C. R., & Reid, D. T. (2016). Stand-off identification of aerosols using mid-infrared backscattering Fourier-transform spectroscopy. Optics Letter, 41, 2266–2269. https://doi.org/10.1364/OL.41.002266.

    Article  ADS  Google Scholar 

  24. Petrov, V. (2015). Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals. Progress in Quantum Electronics, 42, 1–106. https://doi.org/10.1016/j.pquantelec.2015.04.001.

    Article  ADS  MathSciNet  Google Scholar 

  25. Baltuška, A., et al. (2002). Controlling the Carrier-Envelope Phase of Ultrashort Light Pulses with Optical Parametric Amplifiers. Physical Review Letters, 88, 133901. https://doi.org/10.1103/PhysRevLett.88.133901.

    Article  ADS  Google Scholar 

  26. Thiré, N., et al. (2017). 4-W, 100-kHz, few-cycle mid-infrared source with sub-100-mrad carrier-envelope phase noise. Optics Express, 25, 1505–1514. https://doi.org/10.1364/OE.25.001505.

    Article  ADS  Google Scholar 

  27. Seidel, M. et al. (2018). Multi-watt, multi-octave, mid-infrared femtosecond source. Science Advances, 4, eaaq1526. https://doi.org/10.1126/sciadv.aaq1526.

    Article  ADS  Google Scholar 

  28. Thierfelder, C., Sanna, S., Schindlmayr, A., & Schmidt, W. G. (2010). Do we know the band gap of lithium niobate? physica status solidi (c), 7, 362–365. https://doi.org/10.1002/pssc.200982473.

    Article  Google Scholar 

  29. Petrov, V. (2012). Parametric down-conversion devices: The coverage of the mid-infrared spectral range by solid-state laser sources. Optical Materials, 34, 536–554. https://doi.org/10.1016/j.optmat.2011.03.042.

    Article  ADS  Google Scholar 

  30. Cerullo, G., & De Silvestri, S. (2003). Ultrafast optical parametric amplifiers. Review of Scientific Instruments, 74, 1–18. https://doi.org/10.1063/1.1523642.

    Article  ADS  Google Scholar 

  31. Steinle, T., Steinmann, A., Hegenbarth, R., & Giessen, H. (2014). Watt-level optical parametric amplifier at 42 MHz tunable from 1.35 to 4.5 \(mu \)m coherently seeded with solitons. Optics Express, 22, 9567–9573. https://doi.org/10.1364/OE.22.009567.

    Article  ADS  Google Scholar 

  32. Hansel, T., Köhler, W., Assion, A., Bethge, J., & Büttner, E. (2013). Tunable supercontinuum-seeded 130fs OPA for NIR and MIR with 25 nJ pulse energy and 5 MHz repetition rate. CLEO, 2013, 1–2. https://doi.org/10.1364/CLEO_SI.2013.CM2L.6.

    Article  Google Scholar 

  33. Iwakuni, K., et al. (2016). Generation of a frequency comb spanning more than 3.6 octaves from ultraviolet to mid infrared. Optics Letter, 41, 3980–3983. https://doi.org/10.1364/OL.41.003980.

    Article  ADS  Google Scholar 

  34. Heidt, A. M., Feehan, J. S., Price, J. H. V., & Feurer, T. (2017). Limits of coherent supercontinuum generation in normal dispersion fibers. Journal of the Optical Society America B, 34, 764–775. https://doi.org/10.1364/JOSAB.34.000764.

    Article  ADS  Google Scholar 

  35. Liu, Y., et al. (2015). Suppressing short-term polarization noise and related spectral decoherence in all-normal dispersion fiber supercontinuum generation. Journal of Lightwave Technology, 33, 1814–1820. https://doi.org/10.1109/JLT.2015.2397276.

    Article  ADS  Google Scholar 

  36. Heidt, A. M. (2010). Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers. Journal of the Optical Society of America B, 27, 550–559. https://doi.org/10.1364/JOSAB.27.000550.

    Article  Google Scholar 

  37. Domingue, S. R., & Bartels, R. A. (2013). Overcoming temporal polarization instabilities from the latent birefringence in all-normal dispersion, wave-breaking-extended nonlinear fiber supercontinuum generation. Optics Express, 21, 13305–13321. https://doi.org/10.1364/OE.21.013305.

    Article  ADS  Google Scholar 

  38. Arisholm, G. (1997). General numerical methods for simulating second-order nonlinear interactions in birefringent media. Journal of the Optical Society America B, 14, 2543–2549. https://doi.org/10.1364/JOSAB.14.002543.

    Article  ADS  Google Scholar 

  39. Arisholm, G., & Fonnum, H. (2012). Simulation System For Optical Science (SISYFOS) - tutorial, URL http://www.ffi.no/no/Rapporter/12-02042.pdf

  40. Gayer, O., Sacks, Z., Galun, E., & Arie, A. (2008). Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO\(_3\). Applied Physics B, 91, 343–348. https://doi.org/10.1007/s00340-008-2998-2.

    Article  Google Scholar 

  41. Ishizuki, H., & Taira, T. (2008). Mg-doped congruent LiTaO\(_3\) crystal for large-aperture quasi-phase matching device. Optics Express, 16, 16963–16970. https://doi.org/10.1364/OE.16.016963.

    Article  ADS  Google Scholar 

  42. Shoji, I., Kondo, T., Kitamoto, A., Shirane, M., & Ito, R. (1997). Absolute scale of second-order nonlinear-optical coefficients. Journal of the Optical Society America B, 14, 2268–2294. https://doi.org/10.1364/JOSAB.14.002268.

    Article  ADS  Google Scholar 

  43. Ganeev, R. A., Kulagin, I. A., Ryasnyanskii, A. I., Tugushev, R. I., & Usmanov, T. (2003). The nonlinear refractive indices and nonlinear third-order susceptibilities of quadratic crystals. Optics and Spectroscopy, 94, 561–568. https://doi.org/10.1134/1.1570482.

    Article  ADS  Google Scholar 

  44. Luther-Davies, B. & Yu, Y. Efficient Generation of Ultra-short Pulses in the Infrared from a Simple PPLN Optical Parametric Amplifier. In Nonlinear Optics, NTu2A.4 (Optical Society of America, 2017) https://doi.org/10.1364/NLO.2017.NTu2A.4.

  45. Baudisch, M., Hemmer, M., Pires, H., & Biegert, J. (2014). Performance of MgO:PPLN, KTA, and KNbO\(_3\) for mid-wave infrared broadband parametric amplification at high average power. Optical Letter, 39, 5802–5805. https://doi.org/10.1364/OL.39.005802.

    Article  ADS  Google Scholar 

  46. Rigaud, P., et al. (2016). Supercontinuum-seeded few-cycle mid-infrared OPCPA system. Optics Express, 24, 26494–26502. https://doi.org/10.1364/OE.24.026494.

    Article  ADS  Google Scholar 

  47. Südmeyer, T. et al. (2004). High-power femtosecond fiber-feedback optical parametric oscillator based on periodically poled stoichiometric LiTaO\(_3\). Optics letters29, 1111. https://doi.org/10.1364/OL.29.001111.

    Article  ADS  Google Scholar 

  48. Adler, F. Phase-stabilized, et al. (2009). 1.5 W frequency comb at 2.8-4.8 \(mu \)m. Optics Letters, 34, 1330–1332. https://doi.org/10.1364/OL.34.001330.

    Article  ADS  Google Scholar 

  49. Steinle, T., Mörz, F., Steinmann, A. & Giessen, H. (2016). Ultra-stable high average power femtosecond laser system tunable from 1.33 to 20 \(\mu \)m. Optical Letter41, 4863–4866. https://doi.org/10.1364/OL.41.004863.

    Article  ADS  Google Scholar 

  50. Elu, U., et al. (2017). High average power and single-cycle pulses from a mid-IR optical parametric chirped pulse amplifier. Optica, 4, 1024–1029. https://doi.org/10.1364/OPTICA.4.001024.

    Article  Google Scholar 

  51. Hoover, E. E., & Squier, J. A. (2013). Advances in multiphoton microscopy technology. Nature Photonics, 7, 93–101. https://doi.org/10.1038/nphoton.2012.361.

    Article  ADS  Google Scholar 

  52. Cinque, G., Frogley, M. D., & Bartolini, R. (2011). Far-IR/THz spectral characterization of the coherent synchrotron radiation emission at diamond IR beamline B22. Rendiconti Lincei, 22, 33–47. https://doi.org/10.1007/s12210-011-0149-x.

    Article  Google Scholar 

  53. Ishizuki, H., & Taira, T. (2005). High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO\(_3\) device with a 5 mm \(\times \,\)5 mm aperture. Optical Letter, 30, 2918–2920. https://doi.org/10.1364/OL.30.002918.

    Article  ADS  Google Scholar 

  54. Isaenko, L., LiGaX\(_2\) (X\(=\)S, Se, Te), et al. (2003). new nonlinear crystals for the mid-IR. Society of America.

    Google Scholar 

  55. Petrov, V., et al. (2004). Second harmonic generation and optical parametric amplification in the mid-IR with orthorhombic biaxial crystals LiGaS\(_2\) and LiGaSe\(_2\). Applied Physics B, 78, 543–546. https://doi.org/10.1007/s00340-004-1463-0.

    Article  Google Scholar 

  56. Isaenko, L., et al. (2003). Growth and properties of LiGaX\(_2\) (X = S, Se, Te) single crystals for nonlinear optical applications in the mid-IR. Crystal Research and Technology, 38, 379–387. https://doi.org/10.1002/crat.200310047.

    Article  Google Scholar 

  57. Møller, U., & Bang, O. (2013). Intensity noise in normal-pumped picosecond supercontinuum generation, where higher-order Raman lines cross into anomalous dispersion regime. Electronics Letters, 49, 63–65. https://doi.org/10.1049/el.2012.3774.

    Article  Google Scholar 

  58. Sheik-Bahae, M., Hagan, D. J., & Van Stryland, E. W. (1990). Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption. Physical Review Letters, 65, 96–99. https://doi.org/10.1103/PhysRevLett.65.96.

    Article  ADS  Google Scholar 

  59. Kato, K., et al. (2017). Phase-matching properties of LiGaS\(_2\) in the 1.025-10.5910 \(mu \)m spectral range. Optical Letter, 42, 4363–4366. https://doi.org/10.1364/OL.42.004363.

    Article  ADS  Google Scholar 

  60. Mayer, B. et al. (2014). Sub-cycle slicing of phase-locked and intense mid-infrared transients. New Journal of Physics, 16, 063033. http://stacks.iop.org/1367-2630/16/i=6/a=063033.

    Article  ADS  Google Scholar 

  61. Tyazhev, A., et al. (2013). Singly-resonant optical parametric oscillation based on the wide band-gap mid-IR nonlinear optical crystal LiGaS\(_2\). Optical Materials, 35, 1612–1615. https://doi.org/10.1016/j.optmat.2013.03.016.

    Article  ADS  Google Scholar 

  62. Chaitanya Kumar, S., et al. (2015). High-power femtosecond mid-infrared optical parametric oscillator at 7 \(\upmu \)m based on CdSiP2. Optical Letter, 40, 1398–1401. https://doi.org/10.1364/OL.40.001398.

    Article  ADS  Google Scholar 

  63. Chaitanya Kumar, S., Schunemann, P. G., Zawilski, K. T., & Ebrahim-Zadeh, M. (2016). Advances in ultrafast optical parametric sources for the mid-infrared based on CdSiP2. Journal of the Optical Society America B, 33, D44–D56. https://doi.org/10.1364/JOSAB.33.000D44.

    Article  Google Scholar 

  64. Nubbemeyer, T., et al. (2017). 1 kW, 200 mJ picosecond thin-disk laser system. Optical Letter, 42, 1381–1384. https://doi.org/10.1364/OL.42.001381.

    Article  ADS  Google Scholar 

  65. Fattahi, H., Schwarz, A., Keiber, S., & Karpowicz, N. (2013). Efficient, octave-spanning difference-frequency generation using few-cycle pulses in simple collinear geometry. Optical Letter, 38, 4216–4219. https://doi.org/10.1364/OL.38.004216.

    Article  ADS  Google Scholar 

  66. Pupeza, I. et al. (2014). Compact 0.1-W Source of Octave-Spanning Mid-Infrared Femtosecond Pulses Centered at 10 \(\mu \)m. In CLEO: 2014 Postdeadline Paper Digest, STh5C.7 (Optical Society of America, 2014) https://doi.org/10.1364/CLEO_SI.2014.STh5C.7.

  67. Brons, J. et al. (2017). Efficient, high-power, all-bulk spectral broadening in a quasi-waveguide. In 2017 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, CF–9.4 (IEEE 2017). https://doi.org/10.1109/CLEOE-EQEC.2017.8086741.

  68. Fritsch, K., Poetzlberger, M., Pervak, V., Brons, J., & Pronin, O. (2018). All-solid-state multipass spectral broadening to sub-20 fs. Optical Letter, 43, 4643–4646. https://doi.org/10.1364/OL.43.004643.

    Article  ADS  Google Scholar 

  69. Bache, M., Guo, H., & Zhou, B. (2013). Generating mid-IR octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals. Optical Materials Express, 3, 1647. https://doi.org/10.1364/OME.3.001647.

    Article  ADS  Google Scholar 

  70. Zhou, B., & Bache, M. (2016). Invited article: Multiple-octave spanning high-energy mid-ir supercontinuum generation in bulk quadratic nonlinear crystals. APL Photonics, 1, 050802. https://doi.org/10.1063/1.4953177.

    Article  ADS  Google Scholar 

  71. Sundheimer, M. L., Bierlein, J. D., Bosshard, C., Van Stryland, E. W., & Stegeman, G. I. (1993). Large nonlinear phase modulation in quasi-phase-matched KTP waveguides as a result of cascaded second-order processes. Optical Letter, 18, 1397–1399. https://doi.org/10.1364/OL.18.001397.

    Article  ADS  Google Scholar 

  72. Schunemann, P. G., Zawilski, K. T., Pomeranz, L. A., Creeden, D. J., & Budni, P. A. (2016). Advances in nonlinear optical crystals for mid-infrared coherent sources. Journal of the Optical Society America B, 33, D36–D43. https://doi.org/10.1364/JOSAB.33.000D36.

    Article  Google Scholar 

  73. Milam, D. (1998). Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica. Applied Optics, 37, 546–550. https://doi.org/10.1364/AO.37.000546.

    Article  ADS  Google Scholar 

  74. Kanai, T., et al. (2017). Parametric amplification of 100 fs mid-infrared pulses in ZnGeP\(_2\) driven by a Ho:YAG chirped-pulse amplifier. Optical Letter, 42, 683–686. https://doi.org/10.1364/OL.42.000683.

    Article  ADS  Google Scholar 

  75. Couairon, A., & Mysyrowicz, A. (2007). Femtosecond filamentation in transparent media. Physics Reports, 441, 47–189. https://doi.org/10.1016/j.physrep.2006.12.005.

    Article  ADS  Google Scholar 

  76. extracted from SNLO software (Version 66). URL http://www.as-photonics.com/snlo.

  77. Zelmon, D. E., Hanning, E. A., & Schunemann, P. G. (2001). Refractive-index measurements and sellmeier coefficients for zinc germanium phosphide from 2 to 9 \(\mu \)m with implications for phase matching in optical frequency-conversion devices. Journal of the Optical Society America B, 18, 1307–1310. https://doi.org/10.1364/JOSAB.18.001307.

    Article  ADS  Google Scholar 

  78. Hache, A., Sipe, J. E., & van Driel, H. M. (1998). Quantum interference control of electrical currents in gaas. IEEE Journal of Quantum Electronics, 34, 1144–1154. https://doi.org/10.1109/3.687857.

    Article  ADS  Google Scholar 

  79. Petersen, C. R., et al. (2014). Mid-IR supercontinuum covering the 1.4 \(mu \)m to 13.3 \(mu \)m molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nature Photonics, 8, 830–834. https://doi.org/10.1038/nphoton.2014.213.

    Article  ADS  Google Scholar 

  80. Zhao, Z., et al. (2016). 1.5-14 \(mu \)m midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber. Optical Letter, 41, 5222–5225. https://doi.org/10.1364/OL.41.005222.

    Article  ADS  Google Scholar 

  81. Møller, U., et al. (2015). Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber. Optics Express, 23, 3282–3291. https://doi.org/10.1364/OE.23.003282.

    Article  ADS  Google Scholar 

  82. Gattass, R. R., et al. (2012). All-fiber chalcogenide-based mid-infrared supercontinuum source. Optical Fiber Technology, 18, 345–348. https://doi.org/10.1016/j.yofte.2012.07.003.

    Article  ADS  Google Scholar 

  83. Kedenburg, S., Steinle, T., Mörz, F., Steinmann, A., & Giessen, H. (2015). High-power mid-infrared high repetition-rate supercontinuum source based on a chalcogenide step-index fiber. Optical Letter, 40, 2668–2671. https://doi.org/10.1364/OL.40.002668.

    Article  ADS  Google Scholar 

  84. Yu, Y., et al. (2014). A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide. Laser & Photonics Reviews, 8, 792–798. https://doi.org/10.1002/lpor.201400034.

    Article  ADS  Google Scholar 

  85. Silva, F., et al. (2012). Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal. Nature Communications, 3, 807. https://doi.org/10.1038/ncomms1816.

    Article  Google Scholar 

  86. Lanin, A. A., Voronin, A. A., Stepanov, E. A., Fedotov, A. B., & Zheltikov, A. M. (2015). Multioctave, 3–18 \(\mu \)m sub-two-cycle supercontinua from self-compressing, self-focusing soliton transients in a solid. Optical Letter, 40, 974–977. https://doi.org/10.1364/OL.40.000974.

    Article  ADS  Google Scholar 

  87. Moses, J., & Wise, F. W. (2006). Controllable self-steepening of ultrashort pulses in quadratic nonlinear media. Physical Review Letter, 97, 073903. https://doi.org/10.1103/PhysRevLett.97.073903.

    Article  ADS  Google Scholar 

  88. Saraceno, C. J., et al. (2014). Ultrafast thin-disk laser with 80 \(\mu \)J pulse energy and 242 W of average power. Optical Letter, 39, 9–12. https://doi.org/10.1364/OL.39.000009.

    Article  ADS  Google Scholar 

  89. Brons, J., et al. (2016). Powerful 100-fs-scale Kerr-lens mode-locked thin-disk oscillator. Optical Letter, 41, 3567–3570. https://doi.org/10.1364/OL.41.003567.

    Article  ADS  Google Scholar 

  90. Seidel, M., et al. (2017). Efficient high-power ultrashort pulse compression in self-defocusing bulk media. Scientific Reports, 7, 1410. https://doi.org/10.1038/s41598-017-01504-x.

    Article  ADS  Google Scholar 

  91. Liang, H., et al. (2017). High-energy mid-infrared sub-cycle pulse synthesis from a parametric amplifier. Nature Communications, 8, 141. https://doi.org/10.1038/s41467-017-00193-4.

    Article  ADS  Google Scholar 

  92. Krausz, F., & Stockman, M. I. (2014). Attosecond metrology: from electron capture to future signal processing. Nature Photonics, 8, 205–213. https://doi.org/10.1038/nphoton.2014.28.

    Article  ADS  Google Scholar 

  93. Paasch-Colberg, T., et al. (2016). Sub-cycle optical control of current in a semiconductor: from the multiphoton to the tunneling regime. Optica, 3, 1358–1361. https://doi.org/10.1364/OPTICA.3.001358.

    Article  Google Scholar 

  94. Garg, M., et al. (2016). Multi-petahertz electronic metrology. Nature, 538, 359–363. https://doi.org/10.1038/nature19821.

    Article  ADS  Google Scholar 

  95. Miller, L. M., Tobin, M. J., Chio-Srichan, S. & Dumas, P. (2009). The Use of Synchrotron Radiation for Biomedical Applications of Infrared Microscopy. In Barth, A. & Haris, P. I. (eds.) Biological and Biomedical Infrared Spectroscopy Amsterdam: IOS Press. https://doi.org/10.3233/978-1-60750-045-2-403.

  96. Pupeza, I. et al. (2017). Field-resolved spectroscopy in the molecular fingerprint region. In 2017 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, CH–2.4. Munich: IEEE. https://doi.org/10.1109/CLEOE-EQEC.2017.8086859.

  97. Huber, M., et al. (2017). Active intensity noise suppression for a broadband mid-infrared laser source. Optics Express, 25, 22499–22509. https://doi.org/10.1364/OE.25.022499.

    Article  ADS  Google Scholar 

  98. Edwards, D. F. (1997). Gallium Selenide (GaSe). In Palik, E. D. (ed.) Handbook of Optical Constants of Solids (pp. 473 – 487). Burlington: Academic Press. https://doi.org/10.1016/B978-012544415-6.50113-8.

    Chapter  Google Scholar 

  99. Swiderski, J. (2014). High-power mid-infrared supercontinuum sources: Current status and future perspectives. Progress in Quantum Electronics, 38, 189–235. https://doi.org/10.1016/j.pquantelec.2014.10.002.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Seidel .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seidel, M. (2019). From the Near- to the Mid-Infrared. In: A New Generation of High-Power, Waveform Controlled, Few-Cycle Light Sources. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-10791-8_4

Download citation

Publish with us

Policies and ethics