A Monitoring System for Lettuce Cultivation in an NFT Hydroponic System: A Case Study

  • Raquel Gómez-ChablaEmail author
  • Karina Real-Avilés
  • Kléber Calle
  • César Morán
  • Freddy Gavilánez
  • Diego Arcos-Jácome
  • Cristhian Chávez
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 901)


Agriculture is an activity that is an essential part of the world economy. Due to climate change and the need for food self-sufficiency, innovative solutions to improve production conditions are needed. Hydroponics is an alternative for food self-sufficiency because it allows increasing the yield, growth, quality of different crops. In this sense, there are works focused on the automation of hydroponic systems to monitor the environment and control the nutrient solution for the optimal development of plants. However, in Ecuador, there are no reports of monitoring systems for hydroponic systems that allow reducing the losses of plants in crops. This document describes a case study of the implementation of a monitoring system for lettuce cultivation in an NFT (Nutrient Film Technique) hydroponic system whose objective is to improve the quality and quantity of food. This system provides a mobile application that allows monitoring control variables to take corrective actions and regulate different environmental factors. The system was evaluated in a real scenario obtaining more precise values than traditional methods.


Hydroponic NFT Lettuce Monitoring system Sensors 


  1. 1.
    van der Ploeg, J.D.: Peasant-driven agricultural growth and food sovereignty. J. Peasant. Stud. 41, 999–1030 (2014). Scholar
  2. 2.
    Zabel, F., Putzenlechner, B., Mauser, W.: Global agricultural land resources - a high resolution suitability evaluation and its perspectives until 2100 under climate change conditions. PLoS One (2014). Scholar
  3. 3.
    Tittonell, P.: Ecological intensification of agriculture-sustainable by nature. Curr. Opin. Environ. Sustain. 8, 53–61 (2014). Scholar
  4. 4.
    Phupattanasin, P., Tong, S.-R.: Applying information-centric networking in today’s agriculture. APCBEE Proc. 8, 184–188 (2014). Scholar
  5. 5.
    Wortman, S.E.: Crop physiological response to nutrient solution electrical conductivity and pH in an ebb-and-flow hydroponic system. Sci. Hortic. (Amsterdam) 194, 34–42 (2015). Scholar
  6. 6.
    Lee, S., Lee, J.: Beneficial bacteria and fungi in hydroponic systems: Types and characteristics of hydroponic food production methods. Sci. Hortic. (Amsterdam) 195, 206–215 (2015). Scholar
  7. 7.
    Budye, D., Dhanawade, P., Kirti, P., Mahesh, P., Gupte, A.: Automation in hydroponic system. Int. Jounral Res. Eng. Appl. Manag. 3 (2018)Google Scholar
  8. 8.
    Atmadja, W., Liawatimena, S., Lukas, J., Nata, E.P.L., Alexander, I.: Hydroponic system design with real time OS based on ARM cortex-M microcontroller. IOP Conf. Ser. Earth. Environ. Sci. (2018). Scholar
  9. 9.
    Nguyen, N.T., McInturf, S.A., Mendoza-Cózatl, D.G.: Hydroponics: a versatile system to study nutrient allocation and plant responses to nutrient availability and exposure to toxic elements. J. Vis. Exp. (2016).
  10. 10.
    Gómez-Chabla, R., Aguirre-Munizaga, M., Samaniego-Cobo, T., Choez, J., Vera-Lucio, N.: A Reference framework for empowering the creation of projects with arduino in the ecuadorian universities. Commun. Comput. Inf. Sci. (2017). Scholar
  11. 11.
    Viseur, R.: From open source software to open source hardware. 378, 286–291 (2012). Scholar
  12. 12.
    Izquierdo, J.: Simplified hydroponics: a tool for food security in Latin America and the Caribbean. Acta Hortic. 67–74 (2007)Google Scholar
  13. 13.
    Goddek, S., et al. Navigating towards decoupled aquaponic systems: a system dynamics design approach. Water (Switzerland) (2016). Scholar
  14. 14.
    Al-Karaki, G.N., Al-Hashimi, M.: Green fodder production and water use efficiency of some forage crops under hydroponic conditions. ISRN Agron 2012, 1–5 (2012). Scholar
  15. 15.
    Rodríguez-Delfín, A: Advances of hydroponics in Latin America. Acta Hortic. 23–32 (2012)Google Scholar
  16. 16.
    Patil, P., Kakade, S., Kantale, S., Shinde, D.: Automation in hydroponic system using PLC. Int. J. Sci. Technol. Adv. 2, 69–71 (2016)Google Scholar
  17. 17.
    Wu, H., Aoki, A., Arimoto, T., Nakano, T., Ohnuki, H., Murata, M., Ren, H., Endo, H.: Fish stress become visible: a new attempt to use biosensor for real-time monitoring fish stress. Biosens. Bioelectron. 67, 503–510 (2015). Scholar
  18. 18.
    Montoya, A.P., Obando, F.A., Morales, J.G., Vargas, G.: Automatic aeroponic irrigation system based on Arduino’s platform. J. Phys. Conf. Ser. (2017). Scholar
  19. 19.
    Siregar, S., Sari, M.I., Jauhari, R.: Automation system hydroponic using smart solar power plant unit. J. Teknol. 78, 55–60 (2016). Scholar
  20. 20.
    Cambra, C., Sendra, S., Lloret, J., Lacuesta, R.: Smart system for bicarbonate control in irrigation for hydroponic precision farming. Sensors (Switzerland) (2018). Scholar
  21. 21.
    Costanzo, A.: An arduino based system provided with GPS/GPRS shield for real time monitoring of traffic flows. In: AICT 2013 - 7th International Conference on Application of Information and Communication Technologies, Conference Proceedings (2013).
  22. 22.
    Szydlo, T., Nawrocki, P., Brzoza-Woch, R., Zielinski, K.: Power aware MOM for telemetry-oriented applications using GPRS-enabled embedded devices – levee monitoring use case. 2014 Federated Conference on Computer Science Information System, FedCSIS 2014 2:1059–1064 (2014).
  23. 23.
    Sosa, E.O., Alberto, D., Internet, G., Tecnol, R.C.: Internet del futuro. Rev. Cienc. y Tecnol, Desafíos y perspectivas (2014)Google Scholar
  24. 24.
    González, D.R.: Arquitectura y Gestión de la IoT. Rev. Telem@tica 12 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universidad Agraria del EcuadorGuayaquilEcuador

Personalised recommendations