Skip to main content

Normal Topography

  • Chapter
  • First Online:
Book cover Corneal Topography

Abstract

The cornea is aspheric and normally prolate: the central cornea is approximately spherical in front of the pupil and then flattens peripherally through the paracentral and peripheral zones towards the limbal zone, but asymmetrically in different meridia. The centre of the cornea can be defined geometrically (intersection of horizontal and vertical meridia), at the apex, aligned with the pupil centre, or on the visual axis.

Patients with spherical refractions tend to have round or oval patterns. Corneas with regular astigmatism have symmetric or asymmetric bowtie patterns, where as those with irregular astigmatism tend to have an irregular pattern. The right and left eyes of an individual demonstrate enantiomorphism, with mirror image symmetry.

Astigmatism tends to be minimal at birth and then develops “with the rule” (steep in the vertical meridian) during adolescence, possibly due to pressure from the lids. This tends to reduce during middle life and may even reverse to be “against the rule” (steep in the horizontal meridian) later in life.

Contact lens-induced corneal warpage is more common with rigid lenses than soft and is likely to be due to sustained pressure from the lens. Artefacts of corneal shape may arise from errors of alignment and focusing and from tear film drying which manifests as small areas of focal flattening or irregularity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

*References Particularly Worth Reading

  1. *Dingeldein SA, Klyce SD. The topography of normal corneas. Arch Ophthalmol 1989; 107: 512–518.

    Article  CAS  Google Scholar 

  2. Fleming JF. Should refractive surgeons worry about corneal asphericity? Refract Corneal Surg. 1990;6:455–7.

    CAS  PubMed  Google Scholar 

  3. Carney LG, Mainstone JC, Henderson BA. Corneal topography and myopia: a cross-sectional study. Invest Ophthalmol Vis Sci. 1997;38:311–20.

    CAS  PubMed  Google Scholar 

  4. *Waring GO. Making sense of keratospeak II: proposed conventional terminology for corneal topography. Refract Corneal Surg 1989; 5: 362–367.

    Article  Google Scholar 

  5. Eghbali F, Yeung KK, Maloney RK. Topographic determination of corneal asphericity and its lack of effect on the outcome of radial keratotomy. Am J Ophthalmol. 1995;119:275–80.

    Article  CAS  Google Scholar 

  6. Edmund C, Sjontoft E. The central-peripheral radius of the normal corneal curvature: a photokeratoscopic study. Acta Ophthalmol. 1985;63:670–7.

    Article  CAS  Google Scholar 

  7. Wang J, Rice DA, Klyce SD. A new reconstruction algorithm for improvement of corneal topographical analysis. Refract Corneal Surg. 1989;5:379–87.

    CAS  PubMed  Google Scholar 

  8. Holladay JT. Corneal topography using the Holladay diagnostic summary. J Cat Refract Surg. 1997;23:209–21.

    Article  CAS  Google Scholar 

  9. Duke-Elder S. System of ophthalmology. Vol V: ophthalmic optics and refraction. St Louis: CV Mosby; 1970. p. 274–95.

    Google Scholar 

  10. Young T. The mechanisms of the eye. Philos Trans. 1801;91:23.

    Article  Google Scholar 

  11. Donders F. On the anomalies of refraction and accommodation of the eye. London: The New Sydenham Society; 1864.

    Google Scholar 

  12. Fredrick S, Wilson G. The relation between eyelid tension, corneal toricity, and age. Invest Ophthalmol Vis Sci. 1983;24:1367–73.

    Google Scholar 

  13. Mandell RB, St Helen R. Stability of the corneal contour. Am J Optom. 1968;45:797–806.

    Article  CAS  Google Scholar 

  14. Clark BA. Mean topography of normal corneas. Aust J Optom. 1974;57:107–14.

    Google Scholar 

  15. Clark BA. Topography of some individual corneas. Aust J Optom. 1974;57:65–9.

    Google Scholar 

  16. Mandell RB, St Helen R. Position and curvature of the corneal apex. Am J Optom. 1969;46:25–7.

    Article  CAS  Google Scholar 

  17. *Uozato H, Guyton DL. Centring corneal surgical procedures. Am J Ophthalmol 1987; 103: 264–275.

    CAS  PubMed  Google Scholar 

  18. Fay AM, Trokel SL, Myers JA. Pupil diameter and the principal ray. J Cat Refract Surg. 1992;18:348–51.

    Article  CAS  Google Scholar 

  19. *Pande M, Hillman JS. Optical zone centration in keratorefractive surgery. Ophthalmology 1993; 100: 1230–1237.

    Article  CAS  Google Scholar 

  20. Doane JF, Cavanaugh TB. Optical zone centration for keratorefractive surgery [letter]. Ophthalmology. 1994;101:215–6.

    Article  CAS  Google Scholar 

  21. Pande M. Optical zone centration for keratorefractive surgery [reply]. Ophthalmology. 1994;101:216.

    Article  Google Scholar 

  22. Mandell RB. Optical zone centration for keratorefractive surgery [letter]. Ophthalmology. 1994;101:216–7.

    Article  CAS  Google Scholar 

  23. Pande M. Optical zone centration for keratorefractive surgery [reply]. Ophthalmology. 1994;101:217–9.

    Article  Google Scholar 

  24. Guyton DL. More on optical zone centration [letter]. Ophthalmology. 1994;101:793.

    Article  CAS  Google Scholar 

  25. Pande M, Hillman JS. More on optical zone centration [reply]. Ophthalmology. 1994;101:793–4.

    Article  Google Scholar 

  26. Tomlinson A, Schwartz C. The position of the corneal apex in the normal eye. Am J Optom Phys Optics. 1979;56:236–40.

    Article  CAS  Google Scholar 

  27. McAlinden C. Corneal refractive surgery: past to present. Clin Exp Optom. 2012;95(4):386–98.

    Article  Google Scholar 

  28. Mosquera SA, Verma S, McAlinden C. Centration axis in refractive surgery. Eye Vis (Lond). 2015;2:4.

    Article  Google Scholar 

  29. Knoll HA. Corneal contours in the general population as revealed by the photokeratoscope. Am J Optom. 1961;38:389–97.

    Article  CAS  Google Scholar 

  30. *Bogan SJ, Waring GO, Ibrahim O, Drews C, Curtis L. Classification of normal corneal topography based on computer-assisted videokeratography. Arch Ophthalmol 1990; 108: 945–949.

    Article  CAS  Google Scholar 

  31. Rabinowitz YS, Yang H, Brickman Y, Akkina J, Riley C, Rotter JI, Elashoff J. Videokeratography database of normal human corneas. Br J Ophthalmol. 1996;80:610–6.

    Article  CAS  Google Scholar 

  32. Alvi NP, McMahon TT, Devulappally J, Chen TC, Vianna MAG. Characteristics of normal corneal topography using the EyeSys corneal analysis system. J Cataract Refract Surg. 1997;23:849–55.

    Article  CAS  Google Scholar 

  33. *Naufal SC, Hess JS, Friedlander MH, Granet NS. Rasterstereography-based classification of normal corneas. J Cataract Refract Surg 1997; 23: 222–230.

    Article  CAS  Google Scholar 

  34. Marin-Amat M. The physiological variations of the corneal curvature during life, their significance in ocular refraction. Bull Soc Belg Ophthalmol. 1957;136:263.

    Google Scholar 

  35. Sawada A. Refractive errors in an elderly Japanese population: the Tajimi study. Ophthalmology. 2008;115(2):363–70.

    Article  Google Scholar 

  36. Kiely PM, Carney LG, Smith G. Diurnal variations of corneal topography and thickness. Am J Optom Physiol Optic. 1982;59:976–82.

    Article  CAS  Google Scholar 

  37. Read SA, Collins MJ, Carney LG. The diurnal variation of corneal topography and aberrations. Cornea. 2005;24(6):678–87.

    Article  Google Scholar 

  38. Clark BAJ. Variations in corneal topography. Aust J Optom. 1973;56:399–413.

    Google Scholar 

  39. El Hage SD, Beaulne C. Changes in central and peripheral corneal thickness with menstrual cycle. Am J Optom Physiol Optic. 1973;50:863–71.

    Article  Google Scholar 

  40. Kiely PM, Carney LG, Smith G. Menstrual cycle variations of corneal topography and thickness. Am J Optom Physiol Optic. 1983;60:822–9.

    Article  CAS  Google Scholar 

  41. Giuffrè G, Di Rosa L, Fiorino F, Bubella DM, Lodato G. Variations in central corneal thickness during the menstrual cycle in women. Cornea. 2007;26(2):144–6.

    Article  Google Scholar 

  42. Ghahfarokhi NA, Vaseghi A, Ghoreishi M, et al. Evaluation of corneal thickness alterations during menstrual cycle in productive age women. Indian J Ophthalmol. 2015;63(1):30–2.

    Article  Google Scholar 

  43. Schornack M. Hydrogel contact lens-induced corneal warpage. Cont Lens Anterior Eye. 2003;26(3):153–9.

    Article  Google Scholar 

  44. Ruiz-Montenegro J, Mafra CH, Wilson SE, Jumper JM, Klyce SD, Mendelson EN. Corneal topographic alterations in normal contact lens wearers. Ophthalmology. 1993;100:128–34.

    Article  CAS  Google Scholar 

  45. Wilson SE, Lin DTC, Klyce SD, Reidy JJ, Insler MS. Topographic changes in contact lens-induced warpage. Ophthalmology. 1990;97:734–44.

    Article  CAS  Google Scholar 

  46. Wang J, Rice DA, Klyce SD. Analysis of the effects of astigmatism and misalignment on corneal surface reconstruction from photokeratoscopic data. Refract Corneal Surg. 1991;7:129–40.

    CAS  PubMed  Google Scholar 

  47. *Hubbe RE, Foulks GN. The effect of poor fixation on computer-assisted topographic corneal analysis. Ophthalmology 1994; 101: 1745–1748.

    Article  CAS  Google Scholar 

  48. Singh D. Effect of cataract on corneal topography results. J Cataract Refract Surg. 1996;22:1506–8.

    Article  CAS  Google Scholar 

  49. Karabatsas CH, Hoh HB. Is it cataract or misalignment that affects corneal topography measurements? [letter]. J Cataract Refract Surg. 1997;23:694–5.

    Article  CAS  Google Scholar 

  50. Mishima S. Some physiological aspects of the precorneal tearfilm. Arch Ophthalmol. 1965;73:233.

    Article  CAS  Google Scholar 

  51. *Pavlopoulos GP, Horn J, Feldman ST. The effect of artificial tears on computer-assisted corneal topography in normal eyes and after penetrating keratoplasty. Am J Ophthalmol 1995; 119: 712–722.

    Article  CAS  Google Scholar 

  52. Novak KD, Kohnen T, Chang-Godinich A, Soper BA, Kennedy P, Wang Q, Padrick T, Koch DD. Changes in computerised videokeratography induced by artificial tears. J Cat Refract Surg. 1997;23:1023–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Corbett, M., Maycock, N., Rosen, E., O’Brart, D. (2019). Normal Topography. In: Corneal Topography. Springer, Cham. https://doi.org/10.1007/978-3-030-10696-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10696-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10694-2

  • Online ISBN: 978-3-030-10696-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics