Skip to main content

A High Order Numerical Method for Solving Nonlinear Fractional Differential Equation with Non-uniform Meshes

  • Conference paper
  • First Online:
  • 1021 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11189))

Abstract

We introduce a high-order numerical method for solving nonlinear fractional differential equation with non-uniform meshes. We first transform the fractional nonlinear differential equation into the equivalent Volterra integral equation. Then we approximate the integral by using the quadratic interpolation polynomials. On the first subinterval \([t_{0}, t_{1}]\), we approximate the integral with the quadratic interpolation polynomials defined on the nodes \(t_{0}, t_{1}, t_{2}\) and in the other subinterval \([t_{j}, t_{j+1}], j=1, 2, \dots N-1\), we approximate the integral with the quadratic interpolation polynomials defined on the nodes \(t_{j-1}, t_{j}, t_{j+1}\). A high-order numerical method is obtained. Then we apply this numerical method with the non-uniform meshes with the step size \(\tau _{j}= t_{j+1}- t_{j}= (j+1) \mu \) where \(\mu = \frac{2T}{N (N+1)}\). Numerical results show that this method with the non-uniform meshes has the higher convergence order than the standard numerical methods obtained by using the rectangle and the trapzoid rules with the same non-uniform meshes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cao, J., Xu, C.: A high order schema for the numerical solution of the fractional ordinary differential equations. J. Comp. Phys. 238, 154–168 (2013)

    Article  MathSciNet  Google Scholar 

  2. Deng, W.H.: Short memory principle and a predict-corrector approach for fractional differential equations. J. Comput. Appl. Math. 206, 1768–1777 (2007)

    Google Scholar 

  3. Diethelm, K.: Generalized compound quadrature formulae for finite-part integral. IMA J. Numer. Anal. 17, 479–493 (1997)

    Article  MathSciNet  Google Scholar 

  4. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002)

    Article  MathSciNet  Google Scholar 

  5. Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36, 31–52 (2004)

    Article  MathSciNet  Google Scholar 

  6. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)

    Article  MathSciNet  Google Scholar 

  7. Li, C., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J. Comput. Phys. 316, 614–631 (2016)

    Article  MathSciNet  Google Scholar 

  8. Li, C., Zeng, F.: The finite difference methods for fractional ordinary differential equations. Numer. Funct. Anal. Optim. 34, 149–179 (2013)

    Article  MathSciNet  Google Scholar 

  9. Liu, Y., Roberts, J., Yan, Y.: A note on finite difference methods for nonlinear fractional differential equations with non-uniform meshes. Int. J. Comput. Math. 95, 1151–1169 (2018)

    Article  MathSciNet  Google Scholar 

  10. Liu, Y., Roberts, J., Yan, Y.: Detailed error analysis for a fractional Adams method with graded meshes. Numer. Algor. 78(2018), 1195–1216 (2017). https://doi.org/10.1007/s11075-017-0419-5

    Article  MathSciNet  MATH  Google Scholar 

  11. Stynes, M.: Too much regularity may force too much uniqueness. Fractional Calc. Appl. Anal. 19, 1554–1562 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Stynes, M., O’riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

    Article  MathSciNet  Google Scholar 

  13. Pal, K., Liu, F., Yan, Y.: Numerical solutions of fractional differential equations by extrapolation. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) FDM 2014. LNCS, vol. 9045, pp. 299–306. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20239-6_32

    Chapter  Google Scholar 

  14. Quintana-Murillo, J., Yuste, S.B.: A finite difference method with non-uniform timesteps for fractional diffusion and diffusion-wave equations. Eur. Phys. J. Spec. Top. 222, 1987–1998 (2013)

    Article  Google Scholar 

  15. Yan, Y., Pal, K., Ford, N.J.: Higher order numerical methods for solving fractional differential equations. BIT Numer. Math. 54, 555–584 (2014)

    Article  MathSciNet  Google Scholar 

  16. Zhao, L., Deng, W.H.: Jacobi-predictor-corrector approach for the fractional ordinary differential equations. Adv. Comput. Math. 40, 137–165 (2014)

    Article  MathSciNet  Google Scholar 

  17. Yuste, S.B., Quintana-Murillo, J.: Fast, accurate and robust adaptive finite difference methods for fractional diffusion equations. Numer. Algor. 71, 207–228 (2016)

    Article  MathSciNet  Google Scholar 

  18. Zhang, Y., Sun, Z., Liao, H.: Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 265, 195–210 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yubin Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fan, L., Yan, Y. (2019). A High Order Numerical Method for Solving Nonlinear Fractional Differential Equation with Non-uniform Meshes. In: Nikolov, G., Kolkovska, N., Georgiev, K. (eds) Numerical Methods and Applications. NMA 2018. Lecture Notes in Computer Science(), vol 11189. Springer, Cham. https://doi.org/10.1007/978-3-030-10692-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10692-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10691-1

  • Online ISBN: 978-3-030-10692-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics