Skip to main content

Alternate Forms of Burnett and Grad Equations

  • Chapter
  • First Online:
Microscale Flow and Heat Transfer

Part of the book series: Mechanical Engineering Series ((MES))

  • 1035 Accesses

Abstract

In the previous two chapters, a formal derivation of the Burnett and Grad equations was presented. The derivation involved several novel ideas making the approach and the obtained equations invaluable. However, as reviewed in this chapter, both these equations have several limitations because of which working with alternate forms of these equations becomes necessary. Therefore, several variants of these equations have been proposed in the literature. The basic idea behind fixing the equations and the available variants are introduced in this chapter. Comparison of the results as obtained from the variants of the equations for a few specific cases is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal RK, Yun KY, Balakrishnan R (2001) Beyond Navier–Stokes: Burnett equations for flows in the continuum-transition regime. Phys Fluids 13(10):3061–3085; see also: Erratum: “Beyond Navier–Stokes: Burnett equations for flows in the continuum-transition regime” [Phys. Fluids 13, 3061 (2001)] Physics of Fluids 14, 1818 (2002)

    Google Scholar 

  2. Balakrishnan R, Agarwal RK (1997) Numerical simulation of Bhatnagar-Gross-Krook-Burnett equations for hypersonic flows. J Thermophys Heat Transf 11(3):391–399

    Article  Google Scholar 

  3. Bobylev A (2008) Generalized Burnett hydrodynamics. J Stat Phys 132(3):569–580

    Article  MathSciNet  Google Scholar 

  4. Bobylev A, Bisi M, Cassinari M, Spiga G (2011) Shock wave structure for generalized Burnett equations. Phys Fluids 23(3):030607

    Article  Google Scholar 

  5. Chapman S, Cowling TG (1970) The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  6. Comeaux KA, Chapman DR, MacCormack RW (1995) An analysis of the Burnett equations based on the second law of thermodynamics. In: 33rd Aerospace sciences meeting and exhibit, p 415

    Google Scholar 

  7. Dadzie SK (2013) A thermo-mechanically consistent Burnett regime continuum flow equation without Chapman–Enskog expansion. J Fluid Mech 716:R6

    Article  MathSciNet  Google Scholar 

  8. De Groot SR, Mazur P (2013) Non-equilibrium thermodynamics. Courier Dover Publications, New York

    MATH  Google Scholar 

  9. Eu CB (1980) A modified moment method and irreversible thermodynamics. J Chem Phys 73(6):2958–2969

    Article  MathSciNet  Google Scholar 

  10. Grad H (1952) The profile of a steady plane shock wave. Commun Pure Appl Math 5(3):257–300

    Article  MathSciNet  Google Scholar 

  11. Grad H (1958) Principles of the kinetic theory of gases. Springer, Berlin, pp 205–294

    Google Scholar 

  12. Gu XJ, Emerson DR (2009) A high-order moment approach for capturing non-equilibrium phenomena in the transition regime. J Fluid Mech 636:177–216

    Article  MathSciNet  Google Scholar 

  13. Jadhav RS, Singh N, Agrawal A (2017) Force-driven compressible plane Poiseuille flow by Onsager-Burnett equations. Phys Fluids 29(10):102002

    Article  Google Scholar 

  14. Mahendra AK, Singh RK (2013) Onsager reciprocity principle for kinetic models and kinetic schemes. arXiv preprint arXiv:13084119

    Google Scholar 

  15. McLennan JA (1974) Onsager’s theorem and higher-order hydrodynamic equations. Phys Rev A 10(4):1272

    Article  MathSciNet  Google Scholar 

  16. Myong RS (1999) Thermodynamically consistent hydrodynamic computational models for high-Knudsen-number gas flows. Phys Fluids 11(9):2788–2802

    Article  Google Scholar 

  17. Myong R (2011) A full analytical solution for the force-driven compressible Poiseuille gas flow based on a nonlinear coupled constitutive relation. Phys Fluids 23(1):012002

    Article  Google Scholar 

  18. Onsager L (1931) Reciprocal relations in irreversible processes. I. Phys Rev 37(4):405

    Google Scholar 

  19. Onsager L (1931) Reciprocal relations in irreversible processes. II. Phys Rev 38(12):2265

    Google Scholar 

  20. Romero M, Velasco R (1995) Onsager’s symmetry in the Burnett regime. Phys A Stat Mech Appl 222(1–4):161–172

    Article  Google Scholar 

  21. Shavaliyev MS (1993) Super-Burnett corrections to the stress tensor and the heat flux in a gas of Maxwellian molecules. J Appl Math Mech 57(3):573–576

    Article  Google Scholar 

  22. Singh N, Agrawal A (2016) Onsager’s-principle-consistent 13-moment transport equations. Phys Rev E 93(6):063111

    Article  Google Scholar 

  23. Singh N, Gavasane A, Agrawal A (2014) Analytical solution of plane Couette flow in the transition regime and comparison with direct simulation Monte Carlo data. Comput Fluids 97:177–187

    Article  MathSciNet  Google Scholar 

  24. Singh N, Jadhav RS, Agrawal A (2017) Derivation of stable Burnett equations for rarefied gas flows. Phys Rev E 96(1):013106

    Article  MathSciNet  Google Scholar 

  25. Struchtrup H (2004) Stable transport equations for rarefied gases at high orders in the Knudsen number. Phys Fluids 16(11):3921–3934

    Article  MathSciNet  Google Scholar 

  26. Struchtrup H (2005) Macroscopic transport equations for rarefied gas flows. Springer, Berlin

    Book  Google Scholar 

  27. Struchtrup H, Torrilhon M (2003) Regularization of Grad’s 13 moment equations: derivation and linear analysis. Phys Fluids 15(9):2668–2680

    Article  MathSciNet  Google Scholar 

  28. Timokhin MY, Struchtrup H, Kokhanchik A, Bondar YA (2017) Different variants of R13 moment equations applied to the shock-wave structure. Phys Fluids 29(3):037,105

    Article  Google Scholar 

  29. Torrilhon M, Struchtrup H (2004) Regularized 13-moment equations: shock structure calculations and comparison to Burnett models. J Fluid Mech 513:171–198

    Article  MathSciNet  Google Scholar 

  30. Uribe F, Garcia A (1999) Burnett description for plane Poiseuille flow. Phys Rev E 60(4A):4063–4078

    Article  Google Scholar 

  31. Weiss W (1995) Continuous shock structure in extended thermodynamics. Phys Rev E 52:R5760–R5763

    Article  Google Scholar 

  32. Woods L (1979) Transport processes in dilute gases over the whole range of Knudsen numbers. Part 1. General theory. J Fluid Mech 93(3):585–607

    Article  MathSciNet  Google Scholar 

  33. Woods L, Troughton H (1980) Transport processes in dilute gases over the whole range of Knudsen numbers. Part 2. Ultrasonic sound waves. J Fluid Mech 100(2):321–331

    Article  Google Scholar 

  34. Zhong X, MacCormack RW, Chapman DR (1993) Stabilization of the Burnett equations and application to hypersonic flows. AIAA J 31(6):1036–1043

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agrawal, A., Kushwaha, H.M., Jadhav, R.S. (2020). Alternate Forms of Burnett and Grad Equations. In: Microscale Flow and Heat Transfer. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-10662-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10662-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10661-4

  • Online ISBN: 978-3-030-10662-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics