Microscale Flows

  • Amit Agrawal
  • Hari Mohan Kushwaha
  • Ravi Sudam Jadhav
Part of the Mechanical Engineering Series book series (MES)


In this chapter, fundamentals of fluid flow and flow modelling aspects in the slip regime have been presented. This includes a brief introduction to the Navier–Stokes equations and the slip boundary condition. A few analytical solutions for flow in the slip regime are then obtained. Finally, we briefly examine the flow in some complex passages and present some useful empirical correlations. These solutions and insights help appreciate the flow physics in the slip regime better.


  1. 1.
    Acosta R, Muller R, Tobias C (1985) Transport processes in narrow (capillary) channels. AIChE J 31(3):473–482CrossRefGoogle Scholar
  2. 4.
    Agrawal A, Prabhu SV (2008) Deduction of slip coefficient in slip and transition regimes from existing cylindrical Couette flow data. Exp Thermal Fluid Sci 32(4):991–996CrossRefGoogle Scholar
  3. 5.
    Agrawal A, Prabhu SV (2008) Survey on measurement of tangential momentum accommodation coefficient. J Vac Sci Technol A 26(4):634–645CrossRefGoogle Scholar
  4. 6.
    Agrawal A, Djenidi L, Agrawal A (2009) Simulation of gas flow in microchannels with a single 90 bend. Comput Fluids 38(8):1629–1637CrossRefGoogle Scholar
  5. 9.
    Albertoni S, Cercignani C, Gotusso L (1963) Numerical evaluation of the slip coefficient. Phys Fluids 6(7):993–996CrossRefGoogle Scholar
  6. 11.
    Arkilic E, Schmidt M, Breuer K (1997) Gaseous slip flow in long microchannels. J Microelectromech Syst 6(2):167–178CrossRefGoogle Scholar
  7. 12.
    Arkilic EB, Breuer KS, Schmidt MA (2001) Mass flow and tangential momentum accommodation in silicon micromachined channels. J Fluid Mech 437:29–43CrossRefGoogle Scholar
  8. 18.
    Barber RW, Emerson DR (2001) A numerical investigation of low Reynolds number gaseous slip flow at the entrance of circular and parallel plate micro-channels. In: ECCOMAS computational fluid dynamics conference, Swansea, WalesGoogle Scholar
  9. 19.
    Bentz JA, Tompson R, Loyalka S (1997) The spinning rotor gauge: measurements of viscosity, velocity slip coefficients, and tangential momentum accommodation coefficients for N2 and CH4. Vacuum 48(10):817–824CrossRefGoogle Scholar
  10. 29.
    Cercignani C, Daneri A (1963) Flow of a rarefied gas between two parallel plates. J Appl Phys 34(12):3509–3513MathSciNetCrossRefGoogle Scholar
  11. 30.
    Cercignani C, Lampis M, Lorenzani S (2004) Variational approach to gas flows in microchannels. Phys Fluids 16:3426–3437MathSciNetCrossRefGoogle Scholar
  12. 31.
    Chapman S, Cowling TG (1970) The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases. Cambridge University Press, CambridgezbMATHGoogle Scholar
  13. 32.
    Chen RY (1973) Flow in the entrance region at low Reynolds numbers. J Fluids Eng 95(1):153–158CrossRefGoogle Scholar
  14. 33.
    Chen S, Tian Z (2009) Simulation of microchannel flow using the lattice Boltzmann method. Phys A Stat Mech Appl 388(23):4803–4810CrossRefGoogle Scholar
  15. 34.
    Choi S (1991) Fluid flow and heat transfer in microtubes. Micromechanical sensors, actuators, and systems. ASME, New York, pp 123–134Google Scholar
  16. 35.
    Colin S, Lalonde P, Caen R (2004) Validation of a second-order slip flow model in rectangular microchannels. Heat Transf Eng 25(3):23–30CrossRefGoogle Scholar
  17. 40.
    Deissler R (1964) An analysis of second-order slip flow and temperature-jump boundary conditions for rarefied gases. Int J Heat Mass Transf 7(6):681–694CrossRefGoogle Scholar
  18. 42.
    Demsis A, Prabhu SV, Agrawal A (2010) Influence of wall conditions on friction factor for flow of gases under slip condition. Exp Thermal Fluid Sci 34(8):1448–1455CrossRefGoogle Scholar
  19. 43.
    Dombrowski N, Foumeny E, Ookawara S, Riza A (1993) The influence of Reynolds number on the entry length and pressure drop for laminar pipe flow. Can J Chem Eng 71(3):472–476CrossRefGoogle Scholar
  20. 44.
    Dongari N, Agrawal A, Agrawal A (2007) Analytical solution of gaseous slip flow in long microchannels. Int J Heat Mass Transf 50(17):3411–3421CrossRefGoogle Scholar
  21. 46.
    Duan Z (2012) Second-order gaseous slip flow models in long circular and noncircular microchannels and nanochannels. Microfluid Nanofluid 12(5):805–820CrossRefGoogle Scholar
  22. 47.
    Duan Z, Muzychka Y (2010) Slip flow in the hydrodynamic entrance region of circular and noncircular microchannels. J Fluids Eng 132(1):011201CrossRefGoogle Scholar
  23. 48.
    Durst F, Ray S, Ünsal B, Bayoumi O (2005) The development lengths of laminar pipe and channel flows. J Fluids Eng 127(6):1154–1160CrossRefGoogle Scholar
  24. 49.
    Duryodhan VS, Singh SG, Agrawal A (2013) Liquid flow through a diverging microchannel. Microfluid Nanofluid 14(1–2):53–67CrossRefGoogle Scholar
  25. 51.
    Duryodhan VS, Singh SG, Agrawal A (2017) Effect of cross aspect ratio on flow in diverging and converging microchannels. J Fluids Eng 139(6):061203CrossRefGoogle Scholar
  26. 53.
    Ewart T, Perrier P, Graur IA, Méolans JG (2007) Mass flow rate measurements in a microchannel, from hydrodynamic to near free molecular regimes. J Fluid Mech 584:337–356CrossRefGoogle Scholar
  27. 54.
    Ewart T, Perrier P, Graur IA, Méolans JG (2007) Tangential momentum accommodation in microtube. Microfluid Nanofluid 3(6):689–695CrossRefGoogle Scholar
  28. 55.
    Fan H, Xue Q (2000) A new analytic solution of the Navier–Stokes equations for microchannel flows. Microscale Thermophys Eng 4(2):125–143CrossRefGoogle Scholar
  29. 57.
    Gad-el Hak M (1999) The fluid mechanics of microdevices—the Freeman scholar lecture. J Fluids Eng 121(1):5–33CrossRefGoogle Scholar
  30. 59.
    Gavasane A, Sachdev SS, Mittal BK, Bhandarkar UV, Agrawal A (2011) A critical assessment of the Maxwell slip boundary condition for rarefied wall bounded flows. Int J Micro-Nano Scale Transp 2:109–116CrossRefGoogle Scholar
  31. 65.
    Graur I, Veltzke T, Méolans J, Ho M, Thöming J (2015) The gas flow diode effect: theoretical and experimental analysis of moderately rarefied gas flows through a microchannel with varying cross section. Microfluid Nanofluid 18(3):391–402CrossRefGoogle Scholar
  32. 69.
    Gu XJ, Emerson DR, Tang GH (2009) Kramer’s problem and the Knudsen minimum: a theoretical analysis using a linearized 26-moment approach. Contin Mech Thermodyn 21(5):345MathSciNetCrossRefGoogle Scholar
  33. 70.
    Hemadri V, Varade VV, Agrawal A, Bhandarkar UV (2016) Investigation of rarefied gas flow in microchannels of non-uniform cross section. Phys Fluids 28(2):022007CrossRefGoogle Scholar
  34. 71.
    Hemadri V, Varade VV, Agrawal A, Bhandarkar UV (2017) Rarefied gas flow in converging microchannel in slip and early transition regimes. Phys Fluids 29:032002.CrossRefGoogle Scholar
  35. 72.
    Hemadri V, Agrawal A, Bhandarkar UV (2018) Determination of tangential momentum accommodation coefficient and slip coefficients for rarefied gas flow in a microchannel. Sādhanā 43(10):164MathSciNetCrossRefGoogle Scholar
  36. 75.
    Hsia YT, Domoto G (1983) An experimental investigation of molecular rarefaction effects in gas lubricated bearings at ultra-low clearances. J Lubr Technol 105(1):120–129CrossRefGoogle Scholar
  37. 79.
    Jang J, Wereley ST (2006) Gaseous slip flow analysis of a micromachined flow sensor for ultra small flow applications. J Micromech Microeng 17(2):229CrossRefGoogle Scholar
  38. 80.
    Jie D, Diao X, Cheong KB, Yong LK (2000) Navier–Stokes simulations of gas flow in micro devices. J Micromech Microeng 10(3):372CrossRefGoogle Scholar
  39. 81.
    Karniadakis GE, Beskok A, Aluru N (2006) Microflows and nanoflows: fundamentals and simulation, vol 29. Springer, BerlinzbMATHGoogle Scholar
  40. 82.
    Kennard EH (1938) Kinetic theory of gases with an introduction to statistical mechanics. McGraw-Hill, New YorkGoogle Scholar
  41. 87.
    Lihnaropoulos J, Valougeorgis D (2011) Unsteady vacuum gas flow in cylindrical tubes. Fusion Eng Des 86(9–11):2139–2142CrossRefGoogle Scholar
  42. 89.
    Lockerby DA, Reese JM, Emerson DR, Barber RW (2004) Velocity boundary condition at solid walls in rarefied gas calculations. Phys Rev E 70(1):017303CrossRefGoogle Scholar
  43. 90.
    Loyalka S (1996) Theory of the spinning rotor gauge in the slip regime. J Vac Sci Technol A 14(5):2940–2945CrossRefGoogle Scholar
  44. 93.
    Maurer J, Tabeling P, Joseph P, Willaime H (2003) Second-order slip laws in microchannels for helium and nitrogen. Phys Fluids 15(9):2613–2621CrossRefGoogle Scholar
  45. 94.
    Maxwell JC (1879) On stresses in rarified gases arising from inequalities of temperature. Philos Trans R Soc Lond A 170:231–256CrossRefGoogle Scholar
  46. 97.
    Mitsuya Y (1993) Modified Reynolds equation for ultra-thin film gas lubrication using 1.5-order slip-flow model and considering surface accommodation coefficient. J Tribol 115:289–289CrossRefGoogle Scholar
  47. 101.
    Morini GL, Spiga M, Tartarini P (2004) The rarefaction effect on the friction factor of gas flow in microchannels. Superlattices Microstruct 35(3):587–599CrossRefGoogle Scholar
  48. 102.
    Muralidhar K, Biswas G (2005) Advanced engineering fluid mechanics. Narosa Publishing House, New DelhiGoogle Scholar
  49. 105.
    Niazmand H, Renksizbulut M, Saeedi E (2008) Developing slip-flow and heat transfer in trapezoidal microchannels. Int J Heat Mass Transf 51(25–26):6126–6135CrossRefGoogle Scholar
  50. 110.
    Panigrahi PK (2016) Transport phenomena in microfluidic systems. Wiley, New YorkCrossRefGoogle Scholar
  51. 113.
    Pfahler J, Harley J, Bau H, Zemel JN (1991) Gas and liquid flow in small channels. Am Soc Mech Eng Dyn Syst Control Div 32:49–60Google Scholar
  52. 114.
    Pollard W, Present RD (1948) On gaseous self-diffusion in long capillary tubes. Phys Rev 73(7):762CrossRefGoogle Scholar
  53. 115.
    Pong K, Ho CM, Liu J, Tai YC (1994) Non-linear pressure distribution in uniform microchannels. In: Proceedings of application of microfabrication to fluid mechanics, ASME Winter annual meeting, Chicago, pp 51–56Google Scholar
  54. 117.
    Porodnov B, Suetin P, Borisov S, Akinshin V (1974) Experimental investigation of rarefied gas flow in different channels. J Fluid Mech 64(3):417–438CrossRefGoogle Scholar
  55. 125.
    Schamberg R (1947) The fundamental differential equations and the boundary conditions for high speed slip-flow, and their application to several specific problems. PhD thesis, California Institute of TechnologyGoogle Scholar
  56. 126.
    Schlichting H (1960) Boundary layer theory. McGraw-Hill, New YorkzbMATHGoogle Scholar
  57. 127.
    Sharipov F, Graur I (2014) General approach to transient flows of rarefied gases through long capillaries. Vacuum 100:22–25CrossRefGoogle Scholar
  58. 137.
    Sreekanth A (1969) Slip flow through long circular tubes. In: Trilling L, Wachman HY (eds) Proceedings of the sixth international symposium on rarefied gas dynamics. Academic Press, New York, pp 667–680Google Scholar
  59. 138.
    Steckelmacher W (1986) Knudsen flow 75 years on: the current state of the art for flow of rarefied gases in tubes and systems. Rep Prog Phys 49(10):1083CrossRefGoogle Scholar
  60. 139.
    Stemme E, Stemme G (1993) A valveless diffuser/nozzle-based fluid pump. Sens. Actuators A 39(2):159–167CrossRefGoogle Scholar
  61. 143.
    Suetin P, Porodnov B, Chernjak V, Borisov S (1973) Poiseuille flow at arbitrary Knudsen numbers and tangential momentum accommodation. J Fluid Mech 60(3):581–592CrossRefGoogle Scholar
  62. 144.
    Tang G, Li Z, He Y, Tao W (2007) Experimental study of compressibility, roughness and rarefaction influences on microchannel flow. Int J Heat Mass Transf 50(11–12):2282–2295CrossRefGoogle Scholar
  63. 145.
    Tekasakul P, Bentz J, Tompson R, Loyalka S (1996) The spinning rotor gauge: measurements of viscosity, velocity slip coefficients, and tangential momentum accommodation coefficients. J Vac Sci Technol A 14(5):2946–2952CrossRefGoogle Scholar
  64. 151.
    Turner SE, Sun H, Faghri M, Gregory OJ (1999) Local pressure measurement of gaseous flow through microchannels. ASME-Publications-HTD 364:71–80Google Scholar
  65. 156.
    Varade V, Agrawal A, Pradeep AM (2014) Behaviour of rarefied gas flow near the junction of a suddenly expanding tube. J Fluid Mech 739:363–391CrossRefGoogle Scholar
  66. 157.
    Varade V, Agrawal A, Pradeep AM (2014) Experimental study of rarefied gas flow near sudden contraction junction of a tube. Phys Fluids 26(6):062002CrossRefGoogle Scholar
  67. 158.
    Varade V, Agrawal A, Prabhu SV, Pradeep AM (2015) Early onset of flow separation with rarefied gas flowing in a 90 bend tube. Exp Thermal Fluid Sci 66:221–234CrossRefGoogle Scholar
  68. 161.
    Veltzke T, Baune M, Thöming J (2012) The contribution of diffusion to gas microflow: an experimental study. Phys Fluids 24(8):082004CrossRefGoogle Scholar
  69. 162.
    Verma B, Demsis A, Agrawal A, Prabhu SV (2009) Semiempirical correlation for the friction factor of gas flowing through smooth microtubes. J Vac Sci Technol A 27(3):584–590CrossRefGoogle Scholar
  70. 165.
    White C, Borg MK, Scanlon TJ, Reese JM (2013) A DSMC investigation of gas flows in micro-channels with bends. Comput Fluids 71:261–271MathSciNetCrossRefGoogle Scholar
  71. 168.
    Wu L (2008) A slip model for rarefied gas flows at arbitrary Knudsen number. Appl Phys Lett 93(25):253103CrossRefGoogle Scholar
  72. 169.
    Wu P, Little W (1984) Measurement of the heat transfer characteristics of gas flow in fine channel heat exchangers used for microminiature refrigerators. Cryogenics 24(8):415–420CrossRefGoogle Scholar
  73. 171.
    Yamaguchi H, Hanawa T, Yamamoto O, Matsuda Y, Egami Y, Niimi T (2011) Experimental measurement on tangential momentum accommodation coefficient in a single microtube. Microfluid Nanofluid 11(1):57–64CrossRefGoogle Scholar
  74. 174.
    Yu D (1995) An experimental and theoretical investigation of fluid flow and heat transfer in microtubes. In: ASME/JSME thermal engineering conference, vol 1Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Amit Agrawal
    • 1
  • Hari Mohan Kushwaha
    • 1
  • Ravi Sudam Jadhav
    • 1
  1. 1.Department of Mechanical EngineeringIndian Institute of Technology, BombayMumbaiIndia

Personalised recommendations