Skip to main content

Microscale Flows

  • Chapter
  • First Online:

Part of the book series: Mechanical Engineering Series ((MES))

Abstract

In this chapter, fundamentals of fluid flow and flow modelling aspects in the slip regime have been presented. This includes a brief introduction to the Navier–Stokes equations and the slip boundary condition. A few analytical solutions for flow in the slip regime are then obtained. Finally, we briefly examine the flow in some complex passages and present some useful empirical correlations. These solutions and insights help appreciate the flow physics in the slip regime better.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Acosta R, Muller R, Tobias C (1985) Transport processes in narrow (capillary) channels. AIChE J 31(3):473–482

    Article  Google Scholar 

  2. Agrawal A, Prabhu SV (2008) Deduction of slip coefficient in slip and transition regimes from existing cylindrical Couette flow data. Exp Thermal Fluid Sci 32(4):991–996

    Article  Google Scholar 

  3. Agrawal A, Prabhu SV (2008) Survey on measurement of tangential momentum accommodation coefficient. J Vac Sci Technol A 26(4):634–645

    Article  Google Scholar 

  4. Agrawal A, Djenidi L, Agrawal A (2009) Simulation of gas flow in microchannels with a single 90 bend. Comput Fluids 38(8):1629–1637

    Article  Google Scholar 

  5. Albertoni S, Cercignani C, Gotusso L (1963) Numerical evaluation of the slip coefficient. Phys Fluids 6(7):993–996

    Article  Google Scholar 

  6. Arkilic E, Schmidt M, Breuer K (1997) Gaseous slip flow in long microchannels. J Microelectromech Syst 6(2):167–178

    Article  Google Scholar 

  7. Arkilic EB, Breuer KS, Schmidt MA (2001) Mass flow and tangential momentum accommodation in silicon micromachined channels. J Fluid Mech 437:29–43

    Article  Google Scholar 

  8. Barber RW, Emerson DR (2001) A numerical investigation of low Reynolds number gaseous slip flow at the entrance of circular and parallel plate micro-channels. In: ECCOMAS computational fluid dynamics conference, Swansea, Wales

    Google Scholar 

  9. Bentz JA, Tompson R, Loyalka S (1997) The spinning rotor gauge: measurements of viscosity, velocity slip coefficients, and tangential momentum accommodation coefficients for N2 and CH4. Vacuum 48(10):817–824

    Article  Google Scholar 

  10. Cercignani C, Daneri A (1963) Flow of a rarefied gas between two parallel plates. J Appl Phys 34(12):3509–3513

    Article  MathSciNet  Google Scholar 

  11. Cercignani C, Lampis M, Lorenzani S (2004) Variational approach to gas flows in microchannels. Phys Fluids 16:3426–3437

    Article  MathSciNet  Google Scholar 

  12. Chapman S, Cowling TG (1970) The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  13. Chen RY (1973) Flow in the entrance region at low Reynolds numbers. J Fluids Eng 95(1):153–158

    Article  Google Scholar 

  14. Chen S, Tian Z (2009) Simulation of microchannel flow using the lattice Boltzmann method. Phys A Stat Mech Appl 388(23):4803–4810

    Article  Google Scholar 

  15. Choi S (1991) Fluid flow and heat transfer in microtubes. Micromechanical sensors, actuators, and systems. ASME, New York, pp 123–134

    Google Scholar 

  16. Colin S, Lalonde P, Caen R (2004) Validation of a second-order slip flow model in rectangular microchannels. Heat Transf Eng 25(3):23–30

    Article  Google Scholar 

  17. Deissler R (1964) An analysis of second-order slip flow and temperature-jump boundary conditions for rarefied gases. Int J Heat Mass Transf 7(6):681–694

    Article  Google Scholar 

  18. Demsis A, Prabhu SV, Agrawal A (2010) Influence of wall conditions on friction factor for flow of gases under slip condition. Exp Thermal Fluid Sci 34(8):1448–1455

    Article  Google Scholar 

  19. Dombrowski N, Foumeny E, Ookawara S, Riza A (1993) The influence of Reynolds number on the entry length and pressure drop for laminar pipe flow. Can J Chem Eng 71(3):472–476

    Article  Google Scholar 

  20. Dongari N, Agrawal A, Agrawal A (2007) Analytical solution of gaseous slip flow in long microchannels. Int J Heat Mass Transf 50(17):3411–3421

    Article  Google Scholar 

  21. Duan Z (2012) Second-order gaseous slip flow models in long circular and noncircular microchannels and nanochannels. Microfluid Nanofluid 12(5):805–820

    Article  Google Scholar 

  22. Duan Z, Muzychka Y (2010) Slip flow in the hydrodynamic entrance region of circular and noncircular microchannels. J Fluids Eng 132(1):011201

    Article  Google Scholar 

  23. Durst F, Ray S, Ünsal B, Bayoumi O (2005) The development lengths of laminar pipe and channel flows. J Fluids Eng 127(6):1154–1160

    Article  Google Scholar 

  24. Duryodhan VS, Singh SG, Agrawal A (2013) Liquid flow through a diverging microchannel. Microfluid Nanofluid 14(1–2):53–67

    Article  Google Scholar 

  25. Duryodhan VS, Singh SG, Agrawal A (2017) Effect of cross aspect ratio on flow in diverging and converging microchannels. J Fluids Eng 139(6):061203

    Article  Google Scholar 

  26. Ewart T, Perrier P, Graur IA, Méolans JG (2007) Mass flow rate measurements in a microchannel, from hydrodynamic to near free molecular regimes. J Fluid Mech 584:337–356

    Article  Google Scholar 

  27. Ewart T, Perrier P, Graur IA, Méolans JG (2007) Tangential momentum accommodation in microtube. Microfluid Nanofluid 3(6):689–695

    Article  Google Scholar 

  28. Fan H, Xue Q (2000) A new analytic solution of the Navier–Stokes equations for microchannel flows. Microscale Thermophys Eng 4(2):125–143

    Article  Google Scholar 

  29. Gad-el Hak M (1999) The fluid mechanics of microdevices—the Freeman scholar lecture. J Fluids Eng 121(1):5–33

    Article  Google Scholar 

  30. Gavasane A, Sachdev SS, Mittal BK, Bhandarkar UV, Agrawal A (2011) A critical assessment of the Maxwell slip boundary condition for rarefied wall bounded flows. Int J Micro-Nano Scale Transp 2:109–116

    Article  Google Scholar 

  31. Graur I, Veltzke T, Méolans J, Ho M, Thöming J (2015) The gas flow diode effect: theoretical and experimental analysis of moderately rarefied gas flows through a microchannel with varying cross section. Microfluid Nanofluid 18(3):391–402

    Article  Google Scholar 

  32. Gu XJ, Emerson DR, Tang GH (2009) Kramer’s problem and the Knudsen minimum: a theoretical analysis using a linearized 26-moment approach. Contin Mech Thermodyn 21(5):345

    Article  MathSciNet  Google Scholar 

  33. Hemadri V, Varade VV, Agrawal A, Bhandarkar UV (2016) Investigation of rarefied gas flow in microchannels of non-uniform cross section. Phys Fluids 28(2):022007

    Article  Google Scholar 

  34. Hemadri V, Varade VV, Agrawal A, Bhandarkar UV (2017) Rarefied gas flow in converging microchannel in slip and early transition regimes. Phys Fluids 29:032002.

    Article  Google Scholar 

  35. Hemadri V, Agrawal A, Bhandarkar UV (2018) Determination of tangential momentum accommodation coefficient and slip coefficients for rarefied gas flow in a microchannel. Sādhanā 43(10):164

    Article  MathSciNet  Google Scholar 

  36. Hsia YT, Domoto G (1983) An experimental investigation of molecular rarefaction effects in gas lubricated bearings at ultra-low clearances. J Lubr Technol 105(1):120–129

    Article  Google Scholar 

  37. Jang J, Wereley ST (2006) Gaseous slip flow analysis of a micromachined flow sensor for ultra small flow applications. J Micromech Microeng 17(2):229

    Article  Google Scholar 

  38. Jie D, Diao X, Cheong KB, Yong LK (2000) Navier–Stokes simulations of gas flow in micro devices. J Micromech Microeng 10(3):372

    Article  Google Scholar 

  39. Karniadakis GE, Beskok A, Aluru N (2006) Microflows and nanoflows: fundamentals and simulation, vol 29. Springer, Berlin

    MATH  Google Scholar 

  40. Kennard EH (1938) Kinetic theory of gases with an introduction to statistical mechanics. McGraw-Hill, New York

    Google Scholar 

  41. Lihnaropoulos J, Valougeorgis D (2011) Unsteady vacuum gas flow in cylindrical tubes. Fusion Eng Des 86(9–11):2139–2142

    Article  Google Scholar 

  42. Lockerby DA, Reese JM, Emerson DR, Barber RW (2004) Velocity boundary condition at solid walls in rarefied gas calculations. Phys Rev E 70(1):017303

    Article  Google Scholar 

  43. Loyalka S (1996) Theory of the spinning rotor gauge in the slip regime. J Vac Sci Technol A 14(5):2940–2945

    Article  Google Scholar 

  44. Maurer J, Tabeling P, Joseph P, Willaime H (2003) Second-order slip laws in microchannels for helium and nitrogen. Phys Fluids 15(9):2613–2621

    Article  Google Scholar 

  45. Maxwell JC (1879) On stresses in rarified gases arising from inequalities of temperature. Philos Trans R Soc Lond A 170:231–256

    Article  Google Scholar 

  46. Mitsuya Y (1993) Modified Reynolds equation for ultra-thin film gas lubrication using 1.5-order slip-flow model and considering surface accommodation coefficient. J Tribol 115:289–289

    Article  Google Scholar 

  47. Morini GL, Spiga M, Tartarini P (2004) The rarefaction effect on the friction factor of gas flow in microchannels. Superlattices Microstruct 35(3):587–599

    Article  Google Scholar 

  48. Muralidhar K, Biswas G (2005) Advanced engineering fluid mechanics. Narosa Publishing House, New Delhi

    Google Scholar 

  49. Niazmand H, Renksizbulut M, Saeedi E (2008) Developing slip-flow and heat transfer in trapezoidal microchannels. Int J Heat Mass Transf 51(25–26):6126–6135

    Article  Google Scholar 

  50. Panigrahi PK (2016) Transport phenomena in microfluidic systems. Wiley, New York

    Book  Google Scholar 

  51. Pfahler J, Harley J, Bau H, Zemel JN (1991) Gas and liquid flow in small channels. Am Soc Mech Eng Dyn Syst Control Div 32:49–60

    Google Scholar 

  52. Pollard W, Present RD (1948) On gaseous self-diffusion in long capillary tubes. Phys Rev 73(7):762

    Article  Google Scholar 

  53. Pong K, Ho CM, Liu J, Tai YC (1994) Non-linear pressure distribution in uniform microchannels. In: Proceedings of application of microfabrication to fluid mechanics, ASME Winter annual meeting, Chicago, pp 51–56

    Google Scholar 

  54. Porodnov B, Suetin P, Borisov S, Akinshin V (1974) Experimental investigation of rarefied gas flow in different channels. J Fluid Mech 64(3):417–438

    Article  Google Scholar 

  55. Schamberg R (1947) The fundamental differential equations and the boundary conditions for high speed slip-flow, and their application to several specific problems. PhD thesis, California Institute of Technology

    Google Scholar 

  56. Schlichting H (1960) Boundary layer theory. McGraw-Hill, New York

    MATH  Google Scholar 

  57. Sharipov F, Graur I (2014) General approach to transient flows of rarefied gases through long capillaries. Vacuum 100:22–25

    Article  Google Scholar 

  58. Sreekanth A (1969) Slip flow through long circular tubes. In: Trilling L, Wachman HY (eds) Proceedings of the sixth international symposium on rarefied gas dynamics. Academic Press, New York, pp 667–680

    Google Scholar 

  59. Steckelmacher W (1986) Knudsen flow 75 years on: the current state of the art for flow of rarefied gases in tubes and systems. Rep Prog Phys 49(10):1083

    Article  Google Scholar 

  60. Stemme E, Stemme G (1993) A valveless diffuser/nozzle-based fluid pump. Sens. Actuators A 39(2):159–167

    Article  Google Scholar 

  61. Suetin P, Porodnov B, Chernjak V, Borisov S (1973) Poiseuille flow at arbitrary Knudsen numbers and tangential momentum accommodation. J Fluid Mech 60(3):581–592

    Article  Google Scholar 

  62. Tang G, Li Z, He Y, Tao W (2007) Experimental study of compressibility, roughness and rarefaction influences on microchannel flow. Int J Heat Mass Transf 50(11–12):2282–2295

    Article  Google Scholar 

  63. Tekasakul P, Bentz J, Tompson R, Loyalka S (1996) The spinning rotor gauge: measurements of viscosity, velocity slip coefficients, and tangential momentum accommodation coefficients. J Vac Sci Technol A 14(5):2946–2952

    Article  Google Scholar 

  64. Turner SE, Sun H, Faghri M, Gregory OJ (1999) Local pressure measurement of gaseous flow through microchannels. ASME-Publications-HTD 364:71–80

    Google Scholar 

  65. Varade V, Agrawal A, Pradeep AM (2014) Behaviour of rarefied gas flow near the junction of a suddenly expanding tube. J Fluid Mech 739:363–391

    Article  Google Scholar 

  66. Varade V, Agrawal A, Pradeep AM (2014) Experimental study of rarefied gas flow near sudden contraction junction of a tube. Phys Fluids 26(6):062002

    Article  Google Scholar 

  67. Varade V, Agrawal A, Prabhu SV, Pradeep AM (2015) Early onset of flow separation with rarefied gas flowing in a 90 bend tube. Exp Thermal Fluid Sci 66:221–234

    Article  Google Scholar 

  68. Veltzke T, Baune M, Thöming J (2012) The contribution of diffusion to gas microflow: an experimental study. Phys Fluids 24(8):082004

    Article  Google Scholar 

  69. Verma B, Demsis A, Agrawal A, Prabhu SV (2009) Semiempirical correlation for the friction factor of gas flowing through smooth microtubes. J Vac Sci Technol A 27(3):584–590

    Article  Google Scholar 

  70. White C, Borg MK, Scanlon TJ, Reese JM (2013) A DSMC investigation of gas flows in micro-channels with bends. Comput Fluids 71:261–271

    Article  MathSciNet  Google Scholar 

  71. Wu L (2008) A slip model for rarefied gas flows at arbitrary Knudsen number. Appl Phys Lett 93(25):253103

    Article  Google Scholar 

  72. Wu P, Little W (1984) Measurement of the heat transfer characteristics of gas flow in fine channel heat exchangers used for microminiature refrigerators. Cryogenics 24(8):415–420

    Article  Google Scholar 

  73. Yamaguchi H, Hanawa T, Yamamoto O, Matsuda Y, Egami Y, Niimi T (2011) Experimental measurement on tangential momentum accommodation coefficient in a single microtube. Microfluid Nanofluid 11(1):57–64

    Article  Google Scholar 

  74. Yu D (1995) An experimental and theoretical investigation of fluid flow and heat transfer in microtubes. In: ASME/JSME thermal engineering conference, vol 1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agrawal, A., Kushwaha, H.M., Jadhav, R.S. (2020). Microscale Flows. In: Microscale Flow and Heat Transfer. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-10662-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10662-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10661-4

  • Online ISBN: 978-3-030-10662-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics