Skip to main content

Design: Some Comments on the Design of Low-Loss Storage Vessels, Containers and Tanks

  • Chapter
  • First Online:
Low-Loss Storage and Handling of Cryogenic Liquids

Part of the book series: International Cryogenics Monograph Series ((ICMS))

  • 600 Accesses

Abstract

The design of cryogenic liquid vessels is contained in many books and papers. The comments included in this chapter are guidances based on 60 years experience of cryogenics research. The choice of materials for providing reliable vacuum insulation deserves comment. Matching different materials, or similar ones with different metallurgical histories, across vacuum tight joints requires thermal contractions to be closely matched. Many polymers and polymer based composites have large thermal contractions, much larger than those of metals. However, epoxy resins with varying fillers can be made to match the smaller contractions of aluminium alloys; even the still smaller contractions of stainless steels; using a dilatometer and LIN bath for testing specimens. However, the porosity of plastics and stainless steels provide problems for constructing high vacuum insulation. Finally, this chapter considers the thermal design of 12 different cryogenic applications ranging in size, from a LIN cooled sample of 10 mm diameter, to an LNG storage tank of 75 m diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References, Specific

  1. Hartwig, G., Evans, D.: Non-Metallic Materials and Composites. Plenum Press (1982)

    Google Scholar 

  2. Turner, F.H.: Concrete and Cryogenics. Viewpoint Publications (1979)

    Google Scholar 

  3. Scurlock, R.G., Mohd Yusof, K.B.: Cryogenic and frostproof concrete made from conventional aggregates and Portland cement. Adv. Cryog. Eng. 45, 1779 (2000)

    Article  Google Scholar 

  4. Wigley, D.A.: Mechanical Properties of Materials at Low Temperatures. Plenum Press (1971)

    Google Scholar 

  5. Kalia, S., Fu, S.: Polymers at Cryogenic Temperatures. Springer, Berlin, Heidelberg (2013)

    Book  Google Scholar 

  6. Bechel, V.T., Negilski, M., James, J.: Limiting the permeability of composites for cryogenic applications. Compos. Sci. Technol. 66 (2006)

    Article  Google Scholar 

  7. Disdiera, S., Reya, J.M., Paillera, P., Bunsellb, A.R.: Helium permeation in composites materials for cryogenic application. Cryogenics 38 (1998)

    Article  ADS  Google Scholar 

  8. Lyako, V.Y., Fedorchenko, A.V., Kivurenko, O.B., Shnyrkov, V.I.: FRP Dewar for measurements in high pulsed magnetic fields. Cryogenics 49 (2009)

    Google Scholar 

  9. Xu, L., Wang, R., Lu, X.: The vacuum characteristics of FRP liquid helium Dewars. ICEC (1998)

    Google Scholar 

References, General (in Reverse Order of Publication)

  1. Schultheiß, D.: Permeation barrier for lightweight liquid hydrogen tanks. OPUS Augsburg (2007)

    Google Scholar 

  2. Michler, T.: Toughness and hydrogen compatibility of austenitic stainless steel welds at cryogenic temperatures. Hydrog. Energy 32 (2007)

    Article  Google Scholar 

  3. Robinson, S.L., Somerday, B.P., Moody Sandia, N.R.: Hydrogen Embrittlement of Stainless Steels. National Laboratories, Livermore, CA, USA

    Google Scholar 

  4. Pan, C., Su, Y.J., Chu, W.Y., Li, Z.B., Liang, D.T., Qiao, L.J.: Hydrogen embrittlement of weld metal of austenitic stainless steels. Corros. Sci. 44 (2002)

    Article  Google Scholar 

  5. Flynn, T.M.: Cryogenic Engineering, 2nd edn. Taylor and Francis (2004)

    Google Scholar 

  6. Cryogenic Fluids Databook. British Cryogenics Council (2002)

    Google Scholar 

  7. GASPAK Cryodata Inc. e-mail: sales@htss.com

    Google Scholar 

  8. White, G.K.: Experimental Techniques in Low Temperature Physics, 4th edn. Oxford University Press (2002)

    Google Scholar 

  9. Isalski, W.H.: Separation of Gases. Oxford University Press (1989)

    Google Scholar 

  10. Timmerhaus, K.D., Flynn, T.M.: Cryogenic Process Engineering. Plenum Press (1989)

    Google Scholar 

  11. Hands, B.A.: Cryogenic Engineering. Academic Press (1986)

    Google Scholar 

  12. Van Sciver, S.W.: Helium Cryogenics. Plenum Press (1986)

    Google Scholar 

  13. Barron, R.F.: Cryogenic Systems 2. Oxford University Press (1985)

    Google Scholar 

  14. Williams A.F., & Lorn W.L.: Liquefied Petroleum Gases. Ellis Horwood (1982)

    Google Scholar 

  15. Arkharov, A., Marfenina, I., Mikulin, E.: Theory and Design of Cryogenic Systems. Mir Publishers, Moscow (1981)

    Google Scholar 

  16. Frost, W.: Heat Transfer at Low Temperatures. Plenum Press (1975)

    Google Scholar 

  17. Haselden, G.G.: Cryogenic Fundamentals. Academic Press (1971)

    Google Scholar 

  18. Thermodynamic Properties of Refrigerants. ASHRAE (1964)

    Google Scholar 

  19. Kropschot, R.H., Birmingham, B.W., Mann, D.B.: Technology of Liquid Helium. NBS Monograph 111 (1968)

    Google Scholar 

  20. Scott, R.B.: Cryogenic Engineering. Van Nostrand (1959), 6th reprint (1967)

    Google Scholar 

  21. Scott, R.B., Denton, W.H., Nicholls, C.M.: Technology and Uses of Liquid Hydrogen. Pergamon Press (1964)

    Google Scholar 

  22. Din, F.: Thermodynamic Functions of Gases, vol. 1–4. Butterworths (1962)

    Google Scholar 

  23. Hoare, F.E., Jackson, L.C., Kurti, N.: Experimental Cryophysics. Butterworths (1961)

    Google Scholar 

  24. Ruhemann, M.: The Separation of Gases, 2nd edn. Oxford University Press (1949)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Bostock .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bostock, T. ., Scurlock, R.G. (2019). Design: Some Comments on the Design of Low-Loss Storage Vessels, Containers and Tanks. In: Low-Loss Storage and Handling of Cryogenic Liquids. International Cryogenics Monograph Series. Springer, Cham. https://doi.org/10.1007/978-3-030-10641-6_7

Download citation

Publish with us

Policies and ethics