Skip to main content

Abstract

The function of the visual system is far beyond simply focusing the light beams to produce an image. To picture the adaptations to reduce the artifact and enhance the quality of the image, in the first section, we follow the light beams, as they are incident on the surface of the cornea to focus on the retina. We also explained the dynamic mechanisms to produce images of the objects in motion, at different distances, and under various luminances. In the second section, we further explore how the function of the visual system is interwoven with alterations in the magnetic field: visual system provides the components of the magnetic field perception, and the magnetic field affects visual properties. We also introduce the circadian rhythmicity and the modulating role of visual system on it, either directly or indirectly, through conveying the light/dark information and geomagnetic alterations to the brain.

To offer a deeper understanding of the physical concepts and their application in biological events, we have provided five boxes. In Box 3.1, optical instruments for focusing a beam of light, fundamentals of refraction, and optical characteristics of the cornea and crystalline lens in normal and pathologic conditions are introduced. Box 3.2 explains diffraction and the role of pupil size in minimizing it. Box 3.3 provides detailed background on the geomagnetic perception and its interaction with visual functions and offers four mechanisms underlying the perception of slight magnetic field alterations. In Box 3.4, the key features of space weather and its manifestation on Earth’s magnetic field and human physiology or pathologies are presented. Finally, Box 3.5 provides more information about circadian rhythms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spadea L, et al. Effect of corneal light scatter on vision: a review of the literature. Int J Ophthalmol. 2016;9(3):459. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844042/.

  2. Atchison DA, Smith G. Optics of the human eye. Oxford: Butterworth-Heineman; 2000. p. 1–19.

    Google Scholar 

  3. Yasuda A, Yamaguchi T. Steepening of corneal curvature with contraction of the ciliary muscle. J Cataract Refract Surg. 2005;31(6):1177–81.

    Article  PubMed  Google Scholar 

  4. Yasuda A, Yamaguchi T, Ohkoshi K. Changes in corneal curvature in accommodation. J Cataract Refract Surg. 2003;29(7):1297–301.

    Article  PubMed  Google Scholar 

  5. Costello MJ, Mohamed A, Gilliland KO, Fowler WC. Ultrastructural analysis of the human lens fiber cell remodeling zone and the initiation of cellular compaction. Exp Eye Res [Internet]. 2013;116:411–8. Available from: https://doi.org/10.1016/j.exer.2013.10.015.

  6. Jones CE, Atchison DA, Meder R, Pope JM. Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI). Vis Res. 2005;45:2352–66.

    Article  CAS  PubMed  Google Scholar 

  7. Donaldson PJ, Grey AC, Maceo Heilman B, Lim JC, Vaghefi E. The physiological optics of the lens. Prog Retin Eye Res. 2017;56:e1–24.

    Article  CAS  PubMed  Google Scholar 

  8. Mathias RT, Kistler J, Donaldson P. The lens circulation. J Membr Biol. 2007;216(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  9. Land M. Focusing by shape change in the lens of the eye: a commentary on Young (1801) “On the mechanism of the eye”. Philos Trans R Soc B Biol Sci [Internet]. 2015;370(1666):20140308. Available from: http://rstb.royalsocietypublishing.org/cgi/doi/10.1098/rstb.2014.0308.

    Article  Google Scholar 

  10. Vaghefi E, Pontre BP, Jacobs MD, Donaldson PJ. Visualizing ocular lens fluid dynamics using MRI: manipulation of steady state water content and water fluxes. Am J Physiol Regul Integr Comp Physiol. 2011;301:335–42.

    Article  CAS  Google Scholar 

  11. Birkenfeld J, De Castro A, Ortiz S, Pascual D, Marcos S. Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism. Vision Res [Internet]. 2013;86:27–34. Available from: https://doi.org/10.1016/j.visres.2013.04.004.

  12. Buehren TF, Collins MJ, Loughridge JS, Carney LG, Iskander DR. Corneal topography and accommodation. Cornea. 2003;22(4):311–6.

    Article  PubMed  Google Scholar 

  13. Lopping B, Weale RA. Changes in corneal curvature following ocular convergence. Vis Res. 1965;5:207–15.

    Article  CAS  PubMed  Google Scholar 

  14. Sisó-Fuertes I, Domínguez-Vicent A, Del Águila-Carrasco A, Ferrer-Blasco T, Montés-Micó R. Corneal changes with accommodation using dual Scheimpflug photography. J Cataract Refract Surg. 2015;41(5):981–9.

    Article  PubMed  Google Scholar 

  15. Read SA, Buehren T, Collins MJ. Influence of accommodation on the anterior and posterior cornea. J Cataract Refract Surg. 2007;33(11):1877–85.

    Article  PubMed  Google Scholar 

  16. Ni Y, Liu X, Lin Y, Guo X, Wang X, Liu Y. Evaluation of corneal changes with accommodation in young and presbyopic populations using Pentacam High Resolution Scheimpflug system. Clin Exp Ophthalmol. 2013;41(3):244–50.

    PubMed  Google Scholar 

  17. Gambra E, Wang Y, Yuan J, Kruger PB, Marcos S. Dynamic accommodation with simulated targets blurred with high order aberrations. Vis Res. 2010;50(19):1922–7.

    Article  PubMed  Google Scholar 

  18. Parnell J, Alexander Q. Depth perception in humans and animals. Durham theses, Durham University. 2015. Available at Durham E-Theses online: http://etheses.dur.ac.uk/11260/.

  19. Westheimer G. Directional sensitivity of the retina: 75 years of Stiles – Crawford effect. Proc R Soc B Biol Sci. 2008;275(September):2777–86.

    Article  Google Scholar 

  20. Stiles WS, Crawford BH. The luminous efficiency of rays entering the eye pupil at different points. Proc R Soc Lond Ser B, containing papers of a biological character. 1933;112(778):428–50. https://royalsocietypublishing.org/doi/abs/10.1098/rspb.1933.0020.

  21. Runders MC. The Stiles-Crawford effect and an experimental determination of its impact on vision. PhD thesis. Indiana University. 1994;56(05):Section B, 2694. Available from: https://www.proquest.com/products-services/dissertations/.

  22. Atchison DA, Scott DH, Strang NC, Artal P. Influence of Stiles-Crawford apodization on visual acuity. J Opt Soc Am A Opt Image Sci Vis [Internet]. 2002;19(6):1073–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12049344.

  23. Vohnsen B, Iglesias I, Artal P. Guided light and diffraction model of human-eye photoreceptors. J Opt Soc Am A. 2005;22(11):2318–28.

    Article  Google Scholar 

  24. Gorrand J-M, Delori FC. A model for assessment of cone directionality. J Mod Opt. 1997;44(3):473–91.

    Article  Google Scholar 

  25. Vohnsen B. Directional sensitivity of the retina: a layered scattering model of outer-segment photoreceptor pigments. Biomed Opt Express [Internet]. 2014;5(5):1569. Available from: https://www.osapublishing.org/boe/abstract.cfm?uri=boe-5-5-1569.

    Article  Google Scholar 

  26. Westheimer BYG. Dependence of the magnitude of the Stiles-Ceawford effect on retinal location. J Physiol. 1967;192:309–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Van Loo JA, Enoch JM. The scotopic Stiles-Crawford effect. Vis Res. 1975;15(8–9):1005–9.

    PubMed  Google Scholar 

  28. Enoch JM, Hope GM. Directional sensitivity of the foveal and parafoveal retina. Investig Ophthalmol. 1973;12(7):497–503.

    CAS  Google Scholar 

  29. Fuortes MG, Gunkel RD, Rushton WA. Increment thresholds in a subject deficient in cone vision. J Physiol. 1961;156:179–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vaney DI, Sivyer B, Taylor WR. Direction selectivity in the retina: symmetry and asymmetry in structure and function. Nat Rev Neurosci [Internet]. 2012;13(3):194–208. Available from: http://www.nature.com/doifinder/10.1038/nrn3165.

  31. Sastre A, Graham C, Cook MR, Gerkovich MM, Gailey P. Human EEG responses to controlled alterations of the Earth’s magnetic field. Clin Neurophysiol. 2002;113:1382–90.

    Article  PubMed  Google Scholar 

  32. Taylor BK, Johnsen S, Lohmann KJ. Detection of magnetic field properties using distributed sensing: a computational neuroscience approach. Bioinspir Biomim [Internet]. 2017;12(3):1–12. Available from: http://stacks.iop.org/1748-3190/12/i=3/a=036013?key=crossref.5b158dd3fa08d409c2f796fd65f70c3e.

    Google Scholar 

  33. Qin S, Yin H, Yang C, et al. A magnetic protein biocompass. Nat Mater [Internet]. 2015;15(2):217–26. Available from: http://www.nature.com/doifinder/10.1038/nmat4484.

  34. Palmer SJ, Rycroft MJ, Cermack M. Solar and geomagnetic activity, extremely low frequency magnetic and electric fields and human health at the Earth’s surface. Surv Geophys. 2006;40(12):1941–51.

    Google Scholar 

  35. Johnsen S, Lohmann KJ. The physics and neurobiology of magnetoreception. Nat Rev Neurosci [Internet]. 2005;6(9):703–12. Available from: http://www.nature.com/doifinder/10.1038/nrn1745.

  36. Wiltschko W, Wiltschko R. Magnetic compass orientation in birds and its physiological basis. Naturwissenschaften. 2002;89(10):445–52.

    Article  CAS  PubMed  Google Scholar 

  37. Solov’yov IA, Schulten K, Solov IA, Schulten K. Reaction kinetics and mechanism of magnetic field effects in cryptochrome. J Phys Chem B. 2012;116:1089–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Semm P. Neurobiological investigations on the magnetic sensitivity of the pineal gland in rodents and pigeons. Comp Biochem Physiol Part A Physiol. 1983;76(4):683–9.

    Article  Google Scholar 

  39. Reuss S, Olcese J. Magnetic field effects on the rat pineal gland: role of retinal activation by light. Neurosci Lett. 1986;64(1):97–101.

    Article  CAS  PubMed  Google Scholar 

  40. Cremer-Bartels G, Krause K, Mitoskas G, Brodersen D. Magnetic field of the earth as additional zeitgeber for endogenous rhythms? Naturwissenschaften. 1984;71(11):567–74.

    Article  CAS  PubMed  Google Scholar 

  41. Thoss F, Bartsch B. The geomagnetic field influences the sensitivity of our eyes. Vis Res. 2007;47:1036–41.

    Article  PubMed  Google Scholar 

  42. Goldman BD. Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement. J Biol Rhythms. 2016;16(4):283.

    Article  Google Scholar 

  43. Díaz NM, Morera LP, Guido ME. Melanopsin and the non-visual photochemistry in the inner retina of vertebrates. Photochem Photobiol. 2016;92(1):29–44.

    Article  CAS  PubMed  Google Scholar 

  44. Guido ME, Garbarino-Pico E, Contin MA, et al. Inner retinal circadian clocks and non-visual photoreceptors: novel players in the circadian system. Prog Neurobiol. 2010;92(4):484–504.

    Article  PubMed  Google Scholar 

  45. Ramsey DJ, Ramsey KM, Vavvas DG. Genetic advances in ophthalmology: the role of melanopsin-expressing, intrinsically photosensitive retinal ganglion cells in the circadian organization of the visual system. Semin Ophthalmol [Internet]. 2013;28(5–6):406–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24010846.

  46. Remé C, Wirz-Justice A, Rhyner A, Hofmann S. Circadian rhythm in the light response of rat retinal disk-shedding and autophagy. Brain Res. 1986;369:356–60.

    Article  PubMed  Google Scholar 

  47. Ebihara S, Tsuji K. Entrainment of the circadian activity rhythm to the light cycle: effective light intensity for a Zeitgeber in the retinal degenerate C3H mouse and the normal C57BL mouse. Physiol Behav. 1980;24(3):523–7.

    Article  CAS  PubMed  Google Scholar 

  48. Keeler CE. Iris movements in blind mice. Am J Physiol Content. 1927;81(1):107–12.

    Article  Google Scholar 

  49. González Fleitas MF, Bordone M, Rosenstein RE, Dorfman D. Effect of retinal ischemia on the non-image forming visual system. Chronobiol Int [Internet]. 2014;3672(February 2017):1–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25238585.

  50. Zanello SB, Nguyen A, Theriot CA. Retinal non-visual photoreception in space. Aviat Sp Environ Med. 2013;84(12):1277–80.

    Article  Google Scholar 

  51. Mirick DK, Davis S. Melatonin as a biomarker of circadian dysregulation. Cancer Epidemiol Biomark Prev. 2008;17(12):3306–13.

    Article  CAS  Google Scholar 

  52. Semm P, Demaine C. Electrical responses to direct and indirect photic stimulation of the pineal gland in the pigeon. J Neural Transm. 1983;58(3):281–9.

    Article  CAS  PubMed  Google Scholar 

  53. Roney-Dougal SM, Vogl G. Some speculations on the effect of geomagnetism on the pineal gland 1. J Soc Psych Res. 1993;59:1–11.

    Google Scholar 

  54. Reiter RJ. Electromagnetic fields and melatonin production. Biomed Pharmacother [Internet]. 1993;47(10):439–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8061243.

  55. Yamanaka Y, Suzuki Y, Todo T, Honma K, Honma S. Loss of circadian rhythm and light-induced suppression of pineal melatonin levels in Cry1 and Cry2 double-deficient mice. Genes Cells. 2010;15(10):1063–71.

    Article  CAS  PubMed  Google Scholar 

  56. Dardente H, Menet JS, Poirel VJ, et al. Melatonin induces Cry1 expression in the pars tuberalis of the rat. Mol Brain Res. 2003;114(2):101–6.

    Article  CAS  PubMed  Google Scholar 

  57. Poirel VJ, Boggio V, Dardente H, Pevet P, Masson-Pevet M, Gauer F. Contrary to other non-photic cues, acute melatonin injection does not induce immediate changes of clock gene mRNA expression in the rat suprachiasmatic nuclei. Neuroscience. 2003;120(3):745–55.

    Article  CAS  PubMed  Google Scholar 

  58. Miller I. Review article pineal gland, DMT & altered state of consciousness. J Conscious Explor Res. 2013;4(2):214–33.

    Google Scholar 

  59. Nishida S. Metabolic effects of melatonin on oxidative stress and diabetes mellitus. Endocrine. 2005;27(2):131–6.

    Article  CAS  PubMed  Google Scholar 

  60. Bartsch C, Bartsch H. The anti-tumor activity of pineal melatonin and cancer enhancing life styles in industrialized societies. Cancer Causes Control. 2006;17(4):559–71.

    Article  PubMed  Google Scholar 

  61. Malpaux B, Migaud M, Tricoire H, Chemineau P. Biology of mammalian photoperiodism and the critical role of the pineal gland and melatonin. J Biol Rhythms [Internet]. 2001;16(4):336–47. Available from: http://journals.sagepub.com/doi/10.1177/074873001129002051.

    Article  CAS  Google Scholar 

  62. Borjigin J, Zhang LS, Calinescu A-A. Circadian regulation of pineal gland rhythmicity. Mol Cell Endocrinol. 2012;349(1):13–9.

    Article  CAS  PubMed  Google Scholar 

  63. Wetterberg L, Bratlid T, Eberhard G. A multinational study of the relationships between nighttime urinary melatonin production, age, gender, body size, and latitude. Eur Arch Psychiatry Clin Neurosci. 1999;249:256–62.

    Article  CAS  PubMed  Google Scholar 

  64. Thalen B-E, Morkrid L, BF Kjellman LW. Cortisol in light treatment of seasonal and non-seasonardemession: relationshib between melatobin and cortisol. Acta Psychiatr Scand. 1997;96:385–94.

    Article  CAS  PubMed  Google Scholar 

  65. Thalen BE, Kjellman BF, Mørkrid L, Wetterberg L. Melatonin in light treatment of patients with seasonal and nonseasonal depression. Acta Psychiatr Scand. 1995;92(4):274–84.

    Article  CAS  PubMed  Google Scholar 

  66. Messager S, Hazlerigg DG, Mercer JG, Morgan PJ. Photoperiod differentially regulates the expression of Per1 and ICER in the pars tuberalis and the suprachiasmatic nucleus of the Siberian hamster. Eur J Neurosci. 2000;12(8):2865–70.

    Article  CAS  PubMed  Google Scholar 

  67. Messager S, Garabette ML, Hastings MH, Hazlerigg DG. Tissue-specific abolition of Per1 expression in the pars tuberalis by pinealectomy in the Syrian hamster. Neuroreport. 2001;12(3):579–82.

    Article  CAS  PubMed  Google Scholar 

  68. Grota LJ, Holloway WR, Brown GM. 24-Hour rhythm of hypothalamic melatonin immunofluorescence correlates with serum and retinal melatonin. Neuroendocrinology. 1982;34:363–8.

    Article  CAS  PubMed  Google Scholar 

  69. Velarde E, Cerdá-Reverter JM, Alonso-Gómez AL, Sánchez E, Isorna E, Delgado MJ. Melatonin-synthesizing enzymes in pineal, retina, liver, and gut of the goldfish (Carassius): mRNA expression pattern and regulation of daily rhythms by lighting conditions. Chronobiol Int [Internet]. 2010;27(6):1178–201. Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=20653449&retmode=ref&cmd=prlinks%5Cnpapers3://publication/doi/10.3109/07420528.2010.496911.

    Article  CAS  Google Scholar 

  70. Cardinali DP, Rosner JM. Retinal localization of the hydroxyindole-O-methyl transferase (HIOMT) in the rat. Endocrinology. 1971;89(1):301–3.

    Article  CAS  PubMed  Google Scholar 

  71. Acuña-Castroviejo D, Escames G, Venegas C, et al. Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci. 2014;71(16):2997–3025.

    Article  CAS  PubMed  Google Scholar 

  72. Dubocovich ML. Role of melatonin in retina. Prog Retin Res. 1988;8(C):129–51.

    Article  CAS  Google Scholar 

  73. Cremer-Bartels G, Krause K, Küchle HJ. Influence of low magnetic-field-strength variations on the retina and pineal gland of quail and humans. Graefes Arch Clin Exp Ophthalmol. 1983;220(5):248–52.

    Article  CAS  PubMed  Google Scholar 

  74. Welker HA, Semm P, Willig RP, Commentz JC, Wiltschko W, Vollrath L. Effects of an artificial magnetic field on serotonin N-acetyltransferase activity and melatonin content of the rat pineal gland. Exp Brain Res. 1983;50(2):426–32.

    CAS  PubMed  Google Scholar 

  75. Wilson BW, Stevens RG, Anderson LE. Neuroendocrine mediated effects of electromagnetic-field exposure. Possible role of the pineal gland. Life Sci. 1989;45(24):1319–32.

    Article  CAS  PubMed  Google Scholar 

  76. Council NR. Possible health effects of exposure to residential electric and magnetic fields. Washington D.C.: National Academies Press; 1997.

    Google Scholar 

  77. Wallman J, Winawer J. Homeostasis of eye growth and the question of myopia. Neuron. 2004;43(4):447–68.

    Article  CAS  PubMed  Google Scholar 

  78. Birkenfeld J, De Castro A, Marcos S. Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses. Investig Ophthalmol Vis Sci. 2014;55(4):2599–607.

    Article  Google Scholar 

  79. Funk RHW, Thomas Monsees NO. Electromagnetic effects – from cell biology to medicine Richard. Prog Histochem Cytochem. 2009;43:177–264.

    Article  CAS  PubMed  Google Scholar 

  80. Whissell PD, Persinger MA. Emerging synergisms between drugs and physiologically-patterned weak magnetic fields: implications for neuropharmacology and the human population in the twenty-first century. Curr Neuropharmacol. 2007;5:278–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lohmann KJ. Protein complexes: a candidate magnetoreceptor. Nat Mater [Internet]. 2016;15(2):136–8. Available from: http://www.nature.com/doifinder/10.1038/nmat4550.

  82. Thoss F, Bartsch B, Tellschaft D, Thoss M. The light sensitivity of the human visual system depends on the direction of view. J Comp Physiol A. 2002;188(3):235–7.

    Article  CAS  Google Scholar 

  83. Foley LE, Gegear RJ, Reppert SM. Human cryptochrome exhibits light-dependent magnetosensitivity. Nat Commun [Internet]. 2011;2(May):356. Available from: http://www.nature.com/doifinder/10.1038/ncomms1364.

  84. Ritz T, Adem S, Schulten K. A model for photoreceptor-based magnetoreception in birds. Biophys J [Internet]. 2000;78(2):707–18. Available from: http://linkinghub.elsevier.com/retrieve/pii/S000634950076629X.

    Article  CAS  Google Scholar 

  85. Ahmad M, Galland P, Ritz T, Wiltschko R, Wiltschko W. Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana. Planta. 2007;225(3):615–24.

    Article  CAS  PubMed  Google Scholar 

  86. Worster S, Mouritsen H, Hore PJ. A light-dependent magnetoreception mechanism insensitive to light intensity and polarization. J R Soc Interface. 2017;14:0405.

    Article  CAS  Google Scholar 

  87. Schwarze S, Schneider N-L, Reichl T, et al. Weak broadband electromagnetic fields are more disruptive to magnetic compass orientation in a night-migratory songbird (Erithacus rubecula) than strong narrow-band fields. Front Behav Neurosci [Internet]. 2016;10(March):1–13. Available from: http://journal.frontiersin.org/Article/10.3389/fnbeh.2016.00055/abstract.

    Google Scholar 

  88. Mouritsen H, Janssen-Bienhold U, Liedvogel M, et al. Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation. Proc Natl Acad Sci [Internet]. 2004;101(39):14294–9. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.0405968101.

  89. Thoss F, Bartsch B. The human visual threshold depends on direction and strength of a weak magnetic field. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003;189(10):777–9.

    Article  CAS  PubMed  Google Scholar 

  90. Phillips JB, Muheim R, Jorge PE. A behavioral perspective on the biophysics of the light-dependent magnetic compass: a link between directional and spatial perception? J Exp Biol [Internet]. 2010;213(19):3247–55. Available from: http://jeb.biologists.org/cgi/doi/10.1242/jeb.020792.

    Article  Google Scholar 

  91. Kirschvink JL, Gould JL. Biogenic manetite as a basis for magnetic field detection in animals. Biosystems. 1981;13:181–201.

    Article  CAS  PubMed  Google Scholar 

  92. Duret G, Polali S, Anderson ED, et al. Magnetic entropy as a gating mechanism for magnetogenetic Ion channels. bioRxiv [Internet]. 2017:148379. Available from: http://biorxiv.org/content/early/2017/06/11/148379.

  93. Teng J, Loukin SH, Anishkin A, Kung C. L596–W733 bond between the start of the S4–S5 linker and the TRP box stabilizes the closed state of TRPV4 channel. Proc Natl Acad Sci [Internet]. 2015;112(11):3386–91. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1502366112.

  94. Martyna GJ, Tobias DJ, Klein ML. Constant pressure molecular dynamics algorithms. J Chem Phys [Internet]. 1994;101(5):4177–89. Available from: http://aip.scitation.org/doi/10.1063/1.467468.

    Article  CAS  Google Scholar 

  95. Clites BL, Pierce JT. Identifying cellular and molecular mechanisms for magnetosensation. Annu Rev Neurosci. 2017;40:231–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Walker MM. A model for encoding of magnetic field intensity by magnetite-based magnetoreceptor cells. J Theor Biol. 2008;250(1):85–91.

    Article  CAS  PubMed  Google Scholar 

  97. Dunlop DJ. Magnetite: behavior near the single-domain threshold. Science. 1972;176(4030):41–3.

    Article  CAS  PubMed  Google Scholar 

  98. Bazylinski DA, Frankel RB. Magnetosome formation in prokaryotes. Nat Rev Microbiol [Internet]. 2004;2(3):217–30. Available from: http://www.nature.com/doifinder/10.1038/nrmicro842.

  99. Corey DP, Howard J. Models for ion channel gating with compliant states. Biophys J Vol. 1994;66(April):1254–7.

    Article  CAS  Google Scholar 

  100. Qin S, Yin H, Yang C, et al. A magnetic protein biocompass. Nat Mater [Internet]. 2016;15(2):217–26. Available from: http://www.nature.com/doifinder/10.1038/nmat4484.

  101. Pang K, You H, Chen Y, et al. MagR alone is insufficient to confer cellular calcium responses to magnetic stimulation. Front Neural Circuits [Internet]. 2017;11(March):1–13. Available from: http://journal.frontiersin.org/article/10.3389/fncir.2017.00011/full.

    Google Scholar 

  102. Wang Y, Chen J, Zhu F, Hong Y. Identification of medaka magnetoreceptor and cryptochromes. Sci China Life Sci. 2017;60(3):271–8.

    Article  CAS  PubMed  Google Scholar 

  103. Stanley SA, Sauer J, Kane RS, Dordick JS, Friedman JM. Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles. Nat Med [Internet]. 2014;21(1):92–8. Available from: http://www.nature.com/doifinder/10.1038/nm.3730.

  104. Tan DX, Zheng X, Kong J, et al. Fundamental issues related to the origin of melatonin and melatonin isomers during evolution: relation to their biological functions. Int J Mol Sci. 2014;15(9):15858–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Meister M. Physical limits to magnetogenetics. Elife. 2016;5(AUGUST):1–14.

    Google Scholar 

  106. Schulten K. Magnetic field effects in chemistry and biology. Festkörperprobleme. 1982;XXII:61–82.

    Google Scholar 

  107. Yoshii T, Ahmad M, Helfrich-Förster C. Cryptochrome mediates light-dependent magnetosensitivity of Drosophila’s circadian clock. PLoS Biol. 2009;7(4):0813–9.

    Article  CAS  Google Scholar 

  108. Ritz T, Thalau P, Phillips JB, Wiltschko R, Wiltschko W. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature [Internet]. 2004;429(6988):177–80. Available from: http://www.nature.com/doifinder/10.1038/nature02534.

  109. Maeda K, Henbest KB, Cintolesi F, et al. Chemical compass model of avian magnetoreception. Nature [Internet]. 2008;453(7193):387–90. Available from: http://www.nature.com/doifinder/10.1038/nature06834.

  110. Jacobson JI, Yamanashi WS. An initial physical mechanism in the treatment of neurologic disorders with externally applied pico Tesla magnetic fields. Neurol Res. 1995;17(2):144–8.

    Article  CAS  PubMed  Google Scholar 

  111. Persinger MA. A potential multiple resonance mechanism by which weak magnetic fields affect molecules and medical problems: the example of melatonin and experimental “multiple sclerosis”. Med Hypotheses. 2006;66(4):811–5.

    Article  CAS  PubMed  Google Scholar 

  112. Jacobson JI. Pineal-hypothalamic tract mediation of picotesla magnetic fields in the treatment of neurological disorders. Panminerva Med. 1994;36(4):201–5.

    CAS  PubMed  Google Scholar 

  113. Zablotskii V, Polyakova T, Lunov O, Dejneka A. How a high-gradient magnetic field could affect cell life. Sci Rep [Internet]. 2016;6(37407):1–13. Available from: https://www.nature.com/articles/srep37407.pdf.

    Google Scholar 

  114. Maeda K, Robinson AJ, Henbest KB, et al. Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Proc Natl Acad Sci [Internet]. 2012;109(13):4774–9. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1118959109.

  115. Fedele G, Edwards MD, Bhutani S, et al. Genetic analysis of circadian responses to low frequency electromagnetic fields in Drosophila melanogaster. PLoS Genet. 2014;10(12):e1004804.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Chernouss S, Vinogradov A. Geophysical hazard for human health in the circumpolar Auroral Belt: evidence of a relationship between heart rate variation and electromagnetic disturbances. Nat Hazards. 2001;23:121–35.

    Article  Google Scholar 

  117. Carrubba S, Frilot C II, Chesson AL Jr, Marino AA. Evidence of a nonlinear human magnetic sense. Neuroscience. 2007;144:356–67.

    Article  CAS  PubMed  Google Scholar 

  118. Binhi VN, Prato FS. Biological effects of the hypomagnetic field: an analytical review of experiments and theories [Internet]. PLoS ONE. 2017;12:1–51. Available from: https://doi.org/10.1371/journal.pone.0179340.

  119. Otsuka K, Cornélissen G, Weydahl A, et al. Geomagnetic disturbance associated with decrease in heart rate variability in a subarctic area. Biomed Pharmacother. 2000;55:s51–6.

    Article  Google Scholar 

  120. Petrova E, Dimitrova S, Angelov I. Solar and geomagnetic activity effects on heart rate variability. Nat Hazards. 2013;69:25–37.

    Article  Google Scholar 

  121. Cornélissen G, Halberg F, Breus T, et al. Non-photic solar associations of heart rate variability and myocardial infarction. J Atmos Sol Terr Phys. 2002;64(5):707–20.

    Article  Google Scholar 

  122. Watanabe Y, Cornélissen G, Halberg F, Otsuka K, Ohkawa S-I. Associations by signatures and coherences between the human circulation and helio-and geomagnetic activity. Biomed Pharmacother. 2000;55:s76–83.

    Article  Google Scholar 

  123. Haraldsson E, Gissurarson LR. Does geomagnetic activity effect extrasensory perception? Pers Individ Differ. 1987;8(5):745–7.

    Article  Google Scholar 

  124. Arango MA, Peringer MA. 1988-Arango-and-Persinger-PMS-Geophysical-variables-and-behavior--LII-decreased-geomagnetic-activity-and-spontaneous-telepathic-experi.pdf. Percept Mot Skills. 1988;67:907–10.

    Article  Google Scholar 

  125. Persinger MA. Spontaneous telepathic experiences from Phantasms of the living and low global geomagnetic activity. J Am Soc Psych Res. 1986;81:23–36.

    Google Scholar 

  126. Schaut GB, Persinger MA. Geophysical variables and behavior: XXXI. Global geomagnetic activity during spontaneous paranormal experiences: a replication. Percept Mot Skills. 1985;61(2):412–4.

    Article  Google Scholar 

  127. Bonmati-Carrion MA, Arguelles-Prieto R, Martinez-Madrid MJ, et al. Protecting the melatonin rhythm through circadian healthy light exposure. Int J Mol Sci. 2014;15(12):23448–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Arendt J, Skene DJ. Melatonin as a chronobiotic. Indian J Biochem Biophys. 2005;45(5):25–39.

    Google Scholar 

  129. Sun ZS, Albrecht U, Zhuchenko O, Bailey J, Eichele G, Lee CC. RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell. 1997;90(6):1003–11.

    Article  CAS  PubMed  Google Scholar 

  130. Czeisler CA, Duffy JF, Shanahan TL, et al. Stability, precision, and near-24-hour period of the human circadian pacemaker. Science [Internet]. 1999;284(5423):2177–81. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.284.5423.2177.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shahjouei, S., Amini, M. (2019). Biophysics of Vision. In: Rezaei, N., Saghazadeh, A. (eds) Biophysics and Neurophysiology of the Sixth Sense. Springer, Cham. https://doi.org/10.1007/978-3-030-10620-1_3

Download citation

Publish with us

Policies and ethics