Skip to main content

Early Life Nutrition and Non Communicable Disease

  • Chapter
  • First Online:
Primordial Prevention of Non Communicable Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1121))

Abstract

The origin of some non communicable disease (NCDs) is in early life. Evidence has shown that early life nutrition is associated with the risk of developing chronic non communicable diseases. Pregnancy and infancy are the most critical stages that influence the risks of NCDs in childhood and adult life. Prenatal maternal undernutrition and low birth weight lead to obesity and increase the risk factors of cardiovascular disease and diabetes later in life. Nutrition is one of the easily modifiable environmental factors that may affect outcome of pregnancy, trajectory of growth, and immune system of the fetus and infant. Healthy eating behaviors associate with prevention of weight disorders in pediatric, non communicable diseases, and deficiencies of micronutrient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barouki R, Gluckman PD, Grandjean P, Hanson M, Heindel JJ (2012) Developmental origins of non-communicable disease: implications for research and public health. Environ Health 11:42. PubMed PMID: 22715989. Pubmed Central PMCID: PMC3384466. Epub 2012/06/22. eng

    Article  PubMed  PubMed Central  Google Scholar 

  2. Heindel JJ, Skalla LA, Joubert BR, Dilworth CH, Gray KA (2017) Review of developmental origins of health and disease publications in environmental epidemiology. Reprod Toxicol (Elmsford, NY) 68:34–48. PubMed PMID: 27871864. Epub 2016/11/23. eng

    Article  CAS  Google Scholar 

  3. Berti C, Agostoni C, Davanzo R, Hypponen E, Isolauri E, Meltzer HM et al (2017) Early-life nutritional exposures and lifelong health: immediate and long-lasting impacts of probiotics, vitamin D, and breastfeeding. Nutr Rev 75(2):83–97. PubMed PMID: 28130504. Epub 2017/01/29. eng

    PubMed  Google Scholar 

  4. Hanson MA, Bardsley A, De-Regil LM, Moore SE, Oken E, Poston L et al (2015) The International Federation of Gynecology and Obstetrics (FIGO) recommendations on adolescent, preconception, and maternal nutrition: “Think Nutrition First”. Int J Gynaecol Obstet 131(Suppl 4):S213–S253. PubMed PMID: 26433230. Epub 2015/10/05. eng

    Article  PubMed  Google Scholar 

  5. Mitchell EA, Stewart AW, Braithwaite I, Hancox RJ, Murphy R, Wall C et al (2017) Birth weight and subsequent body mass index in children: an international cross-sectional study. Pediatr Obes 12(4):280–285. PubMed PMID: 27170099. Epub 2016/05/14. eng

    Article  CAS  PubMed  Google Scholar 

  6. Feng C, Osgood ND, Dyck RF (2018) Low birth weight, cumulative obesity dose, and the risk of incident type 2 diabetes. J Diabetes Res 2018:8435762. PubMed PMID: 29541643. Pubmed Central PMCID: PMC5818910. Epub 2018/03/16. eng

    PubMed  PubMed Central  Google Scholar 

  7. Watkins AJ, Sirovica S, Stokes B, Isaacs M, Addison O, Martin RA (2017) Paternal low protein diet programs preimplantation embryo gene expression, fetal growth and skeletal development in mice. Biochim Biophys Acta 1863(6):1371–1381. PubMed PMID: 28189722. Epub 2017/02/13. eng

    Article  CAS  Google Scholar 

  8. Ribaroff GA, Wastnedge E, Drake AJ, Sharpe RM, Chambers TJG (2017) Animal models of maternal high fat diet exposure and effects on metabolism in offspring: a meta-regression analysis. Obes Rev 18(6):673–686. PubMed PMID: 28371083. Pubmed Central PMCID: PMC5434919. Epub 2017/04/04. eng

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oddy WH (2017) Breastfeeding, childhood asthma, and allergic disease. Ann Nutr Metab 70(Suppl 2):26–36. PubMed PMID: 28521318. Epub 2017/05/19. eng

    Article  PubMed  Google Scholar 

  10. Bartick MC, Schwarz EB, Green BD, Jegier BJ, Reinhold AG, Colaizy TT, et al (2017) Suboptimal breastfeeding in the United States: maternal and pediatric health outcomes and costs. Matern Child Nutr 13(1). PubMed PMID: 27647492. Epub 2016/09/21. eng

    Google Scholar 

  11. Piernas C, Wang D, Du S, Zhang B, Wang Z, Su C et al (2016) Obesity, non-communicable disease (NCD) risk factors and dietary factors among Chinese school-aged children. Asia Pac J Clin Nutr 25(4):826–840. PubMed PMID: 27702726. Pubmed Central PMCID: PMC5094276. Epub 2016/10/06. eng

    PubMed  PubMed Central  Google Scholar 

  12. Wang Z, Zou Z, Yang Z, Dong Y, Ma J (2017) Association between exposure to the Chinese famine during infancy and the risk of self-reported chronic lung diseases in adulthood: a cross-sectional study. BMJ Open 7(5):e015476. PubMed PMID: 28576899. Pubmed Central PMCID: PMC5623412. Epub 2017/06/04. eng

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang N, Cheng J, Han B, Li Q, Chen Y, Xia F et al (2017) Exposure to severe famine in the prenatal or postnatal period and the development of diabetes in adulthood: an observational study. Diabetologia 60(2):262–269. PubMed PMID: 27807599. Epub 2016/11/04. eng

    Article  PubMed  Google Scholar 

  14. Daraki V, Georgiou V, Papavasiliou S, Chalkiadaki G, Karahaliou M, Koinaki S et al (2015) Metabolic profile in early pregnancy is associated with offspring adiposity at 4 years of age: the Rhea pregnancy cohort Crete, Greece. PLoS One 10(5):e0126327. PubMed PMID: 25970502. Pubmed Central PMCID: PMC4430416. Epub 2015/05/15. eng

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kim SY, Sharma AJ, Sappenfield W, Wilson HG, Salihu HM (2014) Association of maternal body mass index, excessive weight gain, and gestational diabetes mellitus with large-for-gestational-age births. Obstet Gynecol 123(4):737–744. PubMed PMID: 24785599. Pubmed Central PMCID: PMC4548850. Epub 2014/05/03. eng

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tzioumis E, Adair LS (2014) Childhood dual burden of under- and overnutrition in low- and middle-income countries: a critical review. Food Nutr Bull 35(2):230–243. PubMed PMID: 25076771. Pubmed Central PMCID: PMC4313560. Epub 2014/08/01. eng

    Article  PubMed  PubMed Central  Google Scholar 

  17. Brion MJ, Ness AR, Rogers I, Emmett P, Cribb V, Davey Smith G et al (2010) Maternal macronutrient and energy intakes in pregnancy and offspring intake at 10 y: exploring parental comparisons and prenatal effects. Am J Clin Nutr 91(3):748–756. PubMed PMID: 20053880. Pubmed Central PMCID: PMC2822901. Epub 2010/01/08. eng

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lussana F, Painter RC, Ocke MC, Buller HR, Bossuyt PM, Roseboom TJ (2008) Prenatal exposure to the Dutch famine is associated with a preference for fatty foods and a more atherogenic lipid profile. Am J Clin Nutr 88(6):1648–1652. PubMed PMID: 19064527. Epub 2008/12/10. eng

    Article  CAS  PubMed  Google Scholar 

  19. Gugusheff JR, Ong ZY, Muhlhausler BS (2015) The early origins of food preferences: targeting the critical windows of development. FASEB J 29(2):365–373. PubMed PMID: 25466884. Epub 2014/12/04. eng

    Article  CAS  PubMed  Google Scholar 

  20. Langley-Evans SC (2015) Nutrition in early life and the programming of adult disease: a review. J Hum Nutr Diet 28(Suppl 1):1–14. PubMed PMID: 24479490. Epub 2014/02/01. eng

    Article  PubMed  Google Scholar 

  21. Sausenthaler S, Heinrich J, Koletzko S (2011) Early diet and the risk of allergy: what can we learn from the prospective birth cohort studies GINIplus and LISAplus? Am J Clin Nutr 94(6 Suppl):2012S–2017S. PubMed PMID: 21543544. Epub 2011/05/06. eng

    CAS  PubMed  Google Scholar 

  22. Davies PS, Funder J, Palmer DJ, Sinn J, Vickers MH, Wall CR (2016) Early life nutrition and the opportunity to influence long-term health: an Australasian perspective. J Dev Orig Health Dis 7(5):440–448. PubMed PMID: 26810498. Epub 2016/01/27. eng

    Article  CAS  PubMed  Google Scholar 

  23. Grieger JA, Wood LG, Clifton VL (2014) Antioxidant-rich dietary intervention for improving asthma control in pregnancies complicated by asthma: study protocol for a randomized controlled trial. Trials 15:108. PubMed PMID: 24708597. Pubmed Central PMCID: PMC3976556. Epub 2014/04/09. eng

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Beckhaus AA, Garcia-Marcos L, Forno E, Pacheco-Gonzalez RM, Celedon JC, Castro-Rodriguez JA (2015) Maternal nutrition during pregnancy and risk of asthma, wheeze, and atopic diseases during childhood: a systematic review and meta-analysis. Allergy 70(12):1588–1604. PubMed PMID: 26296633. Epub 2015/08/25. eng

    Article  CAS  PubMed  Google Scholar 

  25. Nauta AJ, Ben Amor K, Knol J, Garssen J, van der Beek EM (2013) Relevance of pre- and postnatal nutrition to development and interplay between the microbiota and metabolic and immune systems. Am J Clin Nutr 98(2):586S–593S. PubMed PMID: 23824726. Epub 2013/07/05. eng

    Article  CAS  PubMed  Google Scholar 

  26. Palmer DJ, Sullivan T, Gold MS, Prescott SL, Heddle R, Gibson RA et al (2012) Effect of n-3 long chain polyunsaturated fatty acid supplementation in pregnancy on infants’ allergies in first year of life: randomised controlled trial. BMJ (Clinical research ed) 344:e184. PubMed PMID: 22294737. Pubmed Central PMCID: PMC3269207. Epub 2012/02/02. eng

    Article  CAS  Google Scholar 

  27. Jones AP, Palmer D, Zhang G, Prescott SL (2012) Cord blood 25-hydroxyvitamin D3 and allergic disease during infancy. Pediatrics 130(5):e1128–e1135. PubMed PMID: 23090338. Epub 2012/10/24. eng

    Article  PubMed  Google Scholar 

  28. Zheng J, Xiao X, Zhang Q, Yu M (2014) DNA methylation: the pivotal interaction between early-life nutrition and glucose metabolism in later life. Br J Nutr 112(11):1850–1857. PubMed PMID: 25327140. Epub 2014/10/21. eng

    Article  CAS  PubMed  Google Scholar 

  29. Thorn SR, Rozance PJ, Brown LD, Hay WW Jr (2011) The intrauterine growth restriction phenotype: fetal adaptations and potential implications for later life insulin resistance and diabetes. Semin Reprod Med 29(3):225–236. PubMed PMID: 21710398. Pubmed Central PMCID: PMC3216466. Epub 2011/06/29. eng

    Article  PubMed  PubMed Central  Google Scholar 

  30. Vaiserman AM (2017) Early-life nutritional programming of type 2 diabetes: experimental and quasi-experimental evidence. Nutrients 9(3). PubMed PMID: 28273874. Pubmed Central PMCID: PMC5372899. Epub 2017/03/10. eng

    Article  PubMed Central  Google Scholar 

  31. Li Y, Ley SH, Tobias DK, Chiuve SE, VanderWeele TJ, Rich-Edwards JW et al (2015) Birth weight and later life adherence to unhealthy lifestyles in predicting type 2 diabetes: prospective cohort study. BMJ (Clinical research ed). 351:h3672. PubMed PMID: 26199273. Pubmed Central PMCID: PMC4510778. Epub 2015/07/23. eng

    PubMed Central  Google Scholar 

  32. Grote V, Schiess SA, Closa-Monasterolo R, Escribano J, Giovannini M, Scaglioni S et al (2011) The introduction of solid food and growth in the first 2 y of life in formula-fed children: analysis of data from a European cohort study. Am J Clin Nutr 94(6 Suppl):1785S–1793S. PubMed PMID: 21918213. Epub 2011/09/16. eng

    CAS  PubMed  Google Scholar 

  33. Daniels L, Mallan KM, Fildes A, Wilson J (2015) The timing of solid introduction in an ‘obesogenic’ environment: a narrative review of the evidence and methodological issues. Aust N Z J Public Health 39(4):366–373. PubMed PMID: 26095170. Epub 2015/06/23. eng

    Article  PubMed  Google Scholar 

  34. Dugas C, Kearney M, Mercier R, Perron J, Tchernof A, Marc I et al (2018) Early life nutrition, glycemic and anthropometric profiles of children exposed to gestational diabetes mellitus in utero. Early Human Dev 118:37–41. PubMed PMID: 29459222. Epub 2018/02/21. eng

    Article  Google Scholar 

  35. Fraser A, Ebrahim S, Smith GD, Lawlor DA (2008) The associations between birthweight and adult markers of liver damage and function. Paediatr Perinat Epidemiol 22(1):12–21. PubMed PMID: 18173779. Epub 2008/01/05. eng

    PubMed  Google Scholar 

  36. Li M, Reynolds CM, Segovia SA, Gray C, Vickers MH (2015) Developmental programming of nonalcoholic fatty liver disease: the effect of early life nutrition on susceptibility and disease severity in later life. Biomed Res Int 2015:437107. PubMed PMID: 26090409. Pubmed Central PMCID: PMC4450221. Epub 2015/06/20. eng

    PubMed  PubMed Central  Google Scholar 

  37. Ayonrinde OT, Oddy WH, Adams LA, Mori TA, Beilin LJ, de Klerk N et al (2017) Infant nutrition and maternal obesity influence the risk of non-alcoholic fatty liver disease in adolescents. J Hepatol 67(3):568–576. PubMed PMID: 28619255. Epub 2017/06/18. eng

    Article  PubMed  Google Scholar 

  38. Amor AJ, Cofan M, Mateo-Gallego R, Cenarro A, Civeira F, Ortega E et al (2018) Dietary polyunsaturated fatty acids mediate the inverse association of stearoyl-CoA desaturase activity with the risk of fatty liver in dyslipidaemic individuals. Eur J Nutr. PubMed PMID: 29675558. Epub 2018/04/21. eng

    Google Scholar 

  39. Andreas NJ, Hyde MJ, Herbert BR, Jeffries S, Santhakumaran S, Mandalia S et al (2016) Impact of maternal BMI and sampling strategy on the concentration of leptin, insulin, ghrelin and resistin in breast milk across a single feed: a longitudinal cohort study. BMJ Open 6(7):e010778. PubMed PMID: 27388351. Pubmed Central PMCID: PMC4947729. Epub 2016/07/09. eng

    Article  PubMed  PubMed Central  Google Scholar 

  40. Franco JG, Lisboa PC, Lima NS, Amaral TA, Peixoto-Silva N, Resende AC et al (2013) Resveratrol attenuates oxidative stress and prevents steatosis and hypertension in obese rats programmed by early weaning. J Nutr Biochem 24(6):960–966. PubMed PMID: 22959054. Epub 2012/09/11. eng

    Article  CAS  PubMed  Google Scholar 

  41. Briskiewicz BL, Barreto SM, do Amaral JF, Diniz M, Molina M, Matos SMA et al (2018) Early-life nutritional status and metabolic syndrome: gender-specific associations from a cross-sectional analysis of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Public Health Nutr 21(8):1546–1553. PubMed PMID: 29455688. Epub 2018/02/20. eng

    Article  PubMed  Google Scholar 

  42. Lee HS (2015) Impact of maternal diet on the epigenome during in utero life and the developmental programming of diseases in childhood and adulthood. Nutrients 7(11):9492–9507. PubMed PMID: 26593940. Pubmed Central PMCID: PMC4663595. Epub 2015/11/26. eng

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Belbasis L, Savvidou MD, Kanu C, Evangelou E, Tzoulaki I (2016) Birth weight in relation to health and disease in later life: an umbrella review of systematic reviews and meta-analyses. BMC Med 14(1):147. PubMed PMID: 27677312. Pubmed Central PMCID: PMC5039803. Epub 2016/09/30. eng

    Article  PubMed  PubMed Central  Google Scholar 

  44. Price R, Burdge G, Lillycrop K (2015) The link between early life nutrition and cancer risk. Curr Nutr Rep 4:6–12

    Article  CAS  Google Scholar 

  45. Abiri B, Kelishadi R, Sadeghi H, Azizi-Soleiman F (2016) Effects of maternal diet during pregnancy on the risk of childhood acute lymphoblastic leukemia: a systematic review. Nutr Cancer 68(7):1065–1072. PubMed PMID: 27472187. Epub 2016/07/30. eng

    Article  CAS  PubMed  Google Scholar 

  46. Farvid MS, Chen WY, Michels KB, Cho E, Willett WC, Eliassen AH (2016) Fruit and vegetable consumption in adolescence and early adulthood and risk of breast cancer: population based cohort study. BMJ. (Clinical research ed) 353:i2343

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jennings BA, Willis G (2015) How folate metabolism affects colorectal cancer development and treatment; a story of heterogeneity and pleiotropy. Cancer Lett 356(2 Pt A):224–230. PubMed PMID: 24614284. Epub 2014/03/13. eng

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heidari-Beni, M. (2019). Early Life Nutrition and Non Communicable Disease. In: Kelishadi, R. (eds) Primordial Prevention of Non Communicable Disease. Advances in Experimental Medicine and Biology, vol 1121. Springer, Cham. https://doi.org/10.1007/978-3-030-10616-4_4

Download citation

Publish with us

Policies and ethics