Skip to main content

Applications of OTRs in Gas Turbines and Boilers

  • Chapter
  • First Online:
  • 780 Accesses

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The growing levels of carbon dioxide (CO2) emission in the atmosphere as a result of combustion of fossil fuel and the dissolved CO2 in oceans represent critical environmental concerns as they lead to global warming and ocean acidification (Babu et al. in Energy 85:261–279, 2015 [1]). Power plants using fossil fuel for the production of electrical energy are the major contributor to greenhouse gas emissions with 41% (International Energy Agency in World energy outlook, 2011 [2]). Due to recent sharp reduction in oil prices, the conversion to renewable energy sources is expected to take longer time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Babu P, Linga P, Kumar R, Englezos P (2015) A review of the hydrate-based gas separation (HBGS) process for carbon dioxide pre-combustion capture. Energy 85:261–279

    Article  Google Scholar 

  2. International Energy Agency (2011) World energy outlook

    Google Scholar 

  3. Habib MA, Nemitallah M, Ben-Mansour R (2013) Recent development in oxy-combustion technology and its applications to gas turbine combustors and ITM reactors. Energy Fuels 27:2–19. https://doi.org/10.1021/ef301266j

    Article  Google Scholar 

  4. Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE et al (2008) Progress in carbon dioxide separation and capture: a review. J Environ Sci 20(1):14–27

    Article  Google Scholar 

  5. Mondal MK, Balsora HK, Varshney P (2012) Progress and trends in CO2 capture/separation technologies: a review. Energy 46(1):431–441

    Article  Google Scholar 

  6. Habib MA, Salaudeen SA, Nemitallah MA, Ben-Mansour R, Mokheimer EMA (2016) Numerical investigation of syngas oxy-combustion inside a LSCF-6428 oxygen transport membrane reactor. Energy 96:654–665

    Article  Google Scholar 

  7. Mezghani K, Hamza A (2016) Application of Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes in an oxy-fuel combustion reactor. J Membr Sci 518:254–262

    Article  Google Scholar 

  8. Turi DM, Chiesa P, Macchi E, Ghoniem AF (2016) High fidelity model of the oxygen flux across ion transport membrane reactor: mechanism characterization using experimental data. Energy 96:127–141

    Article  Google Scholar 

  9. Balachandran U, Kleefisch MS, Kobylinski TP, Morissette SL, Pei S (1997) Oxygen ion-conducting dense ceramic membranes (Assigned to Amoco Co.). US patent 5,639,437

    Google Scholar 

  10. Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review of state of the art. Ind Chem Eng 48(1):4638–4663

    Article  Google Scholar 

  11. Farooqui AE, Badr HM, Habib MA, Ben-Mansour R (2014) Numerical investigation of combustion characteristics in an oxygen transport reactor. Int J Energy Res 38(5):638–651

    Article  Google Scholar 

  12. Habib MA, Ahmed P, Ben-Mansour R, Badr HM, Kirchen P, Ghoniem AF (2013) Modeling of a combined ion transport and porous membrane reactor for oxy-combustion. J Membr Sci 446:230–243

    Article  Google Scholar 

  13. Farooqui AE, Habib MA, Badr HM, Ben-Mansour R (2013) Modeling of ion transport reactor for oxy-fuel combustion. Int J Energy Res 37(11):1265–1279

    Article  Google Scholar 

  14. Ben-Mansour R, Habib MA, Badr HM, Nemitallah M (2012) Characteristics of oxy-fuel combustion in an oxygen transport reactor. Energy Fuels 26(7):4599–4606

    Article  Google Scholar 

  15. Nemitallah MA, Habib MA, Mezghani K (2015) Experimental and numerical study of oxygen separation and oxy-combustion characteristics inside a button-cell LNO-ITM reactor. Energy 84:600–611

    Article  Google Scholar 

  16. Mezghani K, Hamza A, Habib MA, Lee D, Shao-Horn Y (2015) Effect of microstructure and thickness on oxygen permeation of La2NiO4+δ membranes. Ceram Int 42(1):666–672

    Article  Google Scholar 

  17. Habib MA, Ahmed P, Ben-Mansour R, Mezghani K, Alam Z, Shao-Horn Y, Ghoniem AF (2015) Experimental and numerical investigation of la2NiO4 membranes for oxygen separation: geometry optimization and model validation. J Energy Resour Technol Trans ASME 137(3):03110

    Article  Google Scholar 

  18. Wang L, Imashuku S, Grimaud A, Lee D, Mezghani K, Habib MA, Shao-Horn Y (2013) Enhancing oxygen permeation of electronically short-circuited oxygen-ion conductors by decorating with mixed ionic-electronic conducting oxides. ECS Electrochem Lett 2(11):F77–F81

    Article  Google Scholar 

  19. Imashuku S, Wang L, Mezghani K, Habib MA, Shao-Horn Y (2013) Oxygen permeation from oxygen ion-conducting membranes coated with porous metals or mixed ionic and electronic conducting oxides. J Electrochem Soc 160(11):E148–E153

    Article  Google Scholar 

  20. Habib MA, Badr HM, Ahmed SF, Ben-Mansour R, Mazghani K, Imashuku GJ, Shao-Horn Y, Mancini N, Mitsos A, Kirchen P, Ghoneim A (2011) A review of recent developments in carbon capture utilizing oxy-fuel combustion in conventional and ion transport membrane systems. Int J Energy Res 35(9):741–764

    Article  Google Scholar 

  21. Salehi M, Pfaff EM, Morkis Junior R, Bergmann CP, Diethelm S, Neururer C, Graule T, Grobety B, Clemens FJ (2013) Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) feedstock development and optimization for thermoplastic forming of thin planar and tubular oxygen separation membranes. J Membr Sci 443:237–245

    Article  Google Scholar 

  22. Nemitallah MA (2016) A study of methane oxy-combustion characteristics inside a modified design button-cell membrane reactor utilizing a modified oxygen permeation model for reacting flows. J Nat Gas Sci Eng 28:61–73

    Article  Google Scholar 

  23. Kirchen P, Apo DJ, Hunt A, Ghoniem AF (2013) A novel ion transport membrane reactor for fundamental investigations of oxygen permeation and oxy-combustion under reactive flow conditions. Proc Combust Inst 34:3463–3470

    Article  Google Scholar 

  24. Hong J, Kirchen P, Ghoniem AF (2013) Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane. J Membr Sci 428:309–322

    Article  Google Scholar 

  25. Ben-Mansour R, Nemitallah MA, Habib MA (2013) Numerical investigation of oxygen permeation and methane oxy-combustion in a stagnation flow ion transport membrane reactor. Energy 54:322–332

    Article  Google Scholar 

  26. Ahmed P, Habib MA, Ben-Mansour R, Kirchen P, Ghoniem AF (2014) CFD (computational fluid dynamics) analysis of a novel reactor design using ion transport membranes for oxy-fuel combustion. Energy 77:932–944

    Article  Google Scholar 

  27. Wang H, Cong Y, Yang W (2002) Oxygen permeation study in a tubular Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen permeable membrane. J Membr Sci 210:259–271

    Article  Google Scholar 

  28. Kvamsdal HM, Jordal K, Bolland O (2007) A quantitative comparison of gas turbine cycles with CO2 capture. Energy 32:10–24

    Article  Google Scholar 

  29. Hashim SM, Mohamed A, Bhatia S (2010) Current status of ceramic-based membranes for oxygen separation from air. Adv Coll Interface Sci 160:88–100

    Article  Google Scholar 

  30. Sunarso J, Baumann S, Serra JM, Meulenberg WA, Liu S, Lin YS, Diniz da Costa JC (2008) Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J Membr Sci 320:13–41

    Article  Google Scholar 

  31. Shao ZP, Yang WS, Cong Y, Dong H, Tong JH, Xiong GX (2000) Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane. J Membr Sci 172:177–188

    Article  Google Scholar 

  32. Kharton VV, Viskup AP, Kovalevsky AV, Naumovic EN, Marques FMB (2001) Ionic transport in oxygen-hyperstoichiometric phases with K2NiF4-type structure. Solid State Ionics 143:337–353

    Article  Google Scholar 

  33. Ting C, Hailei Z, Nansheng X, Yuan L, Xionggang LU, Weizhong D, Fushen L (2011) Synthesis and oxygen permeation properties of a Ce0.8Sm0.2O2−δ–LaBaCO2O5+δ. J Membr Sci 370:158–165

    Article  Google Scholar 

  34. Wiik K, Aasland S, Hansen HL, Tangen LL, Odegard R (2002) Oxygen permeation in the system SrFeO3−x–SrCoO3−y. Solid State Ionics 152–153:675–680

    Article  Google Scholar 

  35. Fan CG, Zuo YB, Li JT, Lu JQ, Chen CS, Bae DS (2007) Highly permeable La0.2Ba0.8Co0.8Fe0.2−xZrxO3−δ membranes for oxygen separation. Sep Purif Technol 55:35

    Article  Google Scholar 

  36. Ishihara T, Yamada T, Arikawa H, Nishiguchi H, Takita Y (2000) mixed electronic-oxide ionic conductivity and oxygen permeating property of Fe-, Co- or Ni-doped LaGaO3 provskite oxide. Solid State Ionics 135:631–636

    Article  Google Scholar 

  37. Habib MA, Badr HM, Ahmed SF, Ben-Mansour R, Mezghani K, Imashuku S, lao GJ, Shao-Horn Y, Mancini ND, Mitsos A, Kirchen P, Ghoniem AF (2011) A review of recent developments in carbon capture utilizing oxy-fuel combustion in conventional and ion transport membrane systems. Int J Energy Res 35:741–764

    Article  Google Scholar 

  38. Manning PS, Sirman JD, Kilner JA (1996) Oxygen self-diffusion and surface exchange studies of oxide electrolytes having the fluorite structure. Solid State Ionics 93(1–2):125–132

    Article  Google Scholar 

  39. Ishihara T, Kilner JA, Honda M, Sakai N, Harumi Y, Yusaku T (1998) Oxygen surface exchange and diffusion in LaGaO3 based perovskite type oxides. Solid State Ionics 113–115:593–600

    Article  Google Scholar 

  40. Ruiz-Trejo E, Sirman JD, Baikov YM, Kilner JA (1998) Oxygen ion diffusivity surface exchange and ionic conductivity in single crystal gadolinia doped ceria. Solid State Ionics 113–115:565–569

    Article  Google Scholar 

  41. Lane JA, Kilner JA (2000) Oxygen surface exchange on gadolinia doped ceria. Solid State Ionics 136–137:927–932

    Article  Google Scholar 

  42. Tan X, Liu Y, Li K (2005) Mixed conducting ceramic hollow fibre membranes for air separation. AIChE J 71:1991

    Article  Google Scholar 

  43. Kim S, Yang YL, Jacobson AJ, Abeles B (1998) Diffusion and surface exchange coefficients in mixed ionic electronic conducting oxides from the pressure dependence of oxygen permeation. Solid State Ionics 106:189–195

    Article  Google Scholar 

  44. Lin YS, Wang Y, Han J (1994) Oxygen permeation through thin mixed-conducting solid oxide membranes. AIChE J 40:786–798

    Article  Google Scholar 

  45. Xu SJ, Thomson WJ (1999) Oxygen permeation rates through ion-conducting perovskite membranes. Chem Eng Sci 54(17):3839–3850

    Article  Google Scholar 

  46. Liu S, Tan X, Shao Z, Diniz da Costa J (2006) Ba0.5Sr0.5Co0.8Fe0.2O3−δ ceramic hollow-fiber membranes for oxygen permeation. AIChE J 52:3452

    Article  Google Scholar 

  47. Tan X, Li K (2002) Modeling of air separation in a LSCF hollow-fibre membrane module. AIChE J 48:1469

    Article  Google Scholar 

  48. Lee T, Yang Y, Jacobson A, Abelesa B, Zhou M (1997) Oxygen permeation in dense SrCo0.8Fe0.2O3−δ membranes: surface exchange kinetics versus bulk diffusion. Solid State Ionics 100:77–85

    Article  Google Scholar 

  49. Shao Z, Xiong G, Tong J, Dong H, Yang W (2001) Ba effect in doped Sr(Co0.8Fe0.2)O3−δ on the phase structure and oxygen permeation properties of the dense ceramic membranes. Sep Purif Technol 25:419–429

    Article  Google Scholar 

  50. Wang H, Wang R, Liang D, Yang W (2004) Experimental and modeling studies on Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) tubular membranes for air separation. J Membr Sci 243:405

    Article  Google Scholar 

  51. Ge L, Shao Z, Zhang K, Ran R, Diniz da Costa J, Liu S (2009) Evaluation of mixed-conducting lanthanum-strontium-cobaltite ceramic membrane for oxygen separation. AIChE J 55:2603

    Article  Google Scholar 

  52. Ito W, Nagai T, Sakon T (2007) Oxygen separation from compressed air using a mixed conducting perovskite-type oxide membrane. Solid State Ionics 178:809

    Article  Google Scholar 

  53. Zhu X, Sun S, Cong Y, Yang W (2009) Operation of perovskite membrane under vacuum and elevated pressures for high-purity oxygen production. J Membr Sci 345:47–52

    Article  Google Scholar 

  54. Zhu X, Cong Y, Yang W (2006) Oxygen permeability and structural stability of BaCe0.15Fe0.85O3−δ membranes. J Membr Sci 283:38–44

    Article  Google Scholar 

  55. Qi X, Lin Y, Swartz S (2000) Electrical transport and oxygen permeation properties of lanthanum cobaltite membranes synthesized by different methods. Ind Eng Chem Res 39:646

    Article  Google Scholar 

  56. Rui Z, Li Y, Lin Y (2009) Analysis of oxygen permeation through dense ceramic membranes with chemical reactions of finite rate. Chem Eng Sci 64:172–179

    Article  Google Scholar 

  57. Akin FT, Jerry LYS (2004) Oxygen permeation through oxygen ionic or mixed-conducting ceramic membranes with chemical reactions. J Membr Sci 231:133–146

    Article  Google Scholar 

  58. Chang X, Zhang C, He Y, Dong X, Jin W, Xu N (2009) A comparative study of the performance of symmetric and asymmetric mixed-conducting membranes. Chin J Chem Eng 17:562

    Article  Google Scholar 

  59. Akin F, Lin Y (2002) Oxidative coupling of methane in dense ceramic membrane reactor with high yields. AIChE J 48:2298–2306

    Article  Google Scholar 

  60. Akin FT, Lin YS (2002) Selective oxidation of ethane to ethylene in a dense tubular membrane reactor. J Membr Sci 209:457–467

    Article  Google Scholar 

  61. Bouwmeester HJM, Burggraaf AJ (1997) Dense ceramic membranes for oxygen separation. In: Gellings PJ, Bouwmeester HJM (eds) The CRC handbook of solid state electrochemistry. CRC Press, Boca Raton, FL Chapter 14

    Chapter  Google Scholar 

  62. Han J, Xomeritakis G, Lin YS (1997) Oxygen permeation through thin zirconia/yttria membranes prepared by EVD. Solid State Ionics 93:263–272

    Article  Google Scholar 

  63. Zeng Y, Lin YS (2000) Oxygen permeation and oxidative coupling of methane in yttria doped bismuth oxide membrane reactor. J Catal 193:58–64

    Article  Google Scholar 

  64. Park JH, Blumenthal RN (1989) Electronic transport in 8 mole percent Y2O3–ZrO2. J Electrochem Soc 136:2867

    Article  Google Scholar 

  65. Kusaba H, Shibata Y, Sasaki K, Teraoka Y (2006) Surface effect on oxygen permeation through dense membrane of mixed-conductive LSCF perovskite-type oxide. Solid State Ionics 177:2249–2253

    Article  Google Scholar 

  66. Mancini ND, Mitsos A (2011) Ion transport membrane reactors for oxy-combustion part II: analysis and comparison of alternatives. Energy 36(8):4721–4739

    Article  Google Scholar 

  67. Chen L, Ghoniem AF (2012) Simulation of oxy-coal combustion in a 100 kWth test facility using RANS and LES: a validation study. Energy Fuels 26:4783–4798. https://doi.org/10.1021/ef3006993

    Article  Google Scholar 

  68. Ben-Mansour R, Habib MA, Badr HM, Nemitallah MA (2012) Characteristics of oxyfuel combustion in an oxygen transport reactor. Energy Fuels 26:4599–4606. https://doi.org/10.1021/ef300539c

  69. Nemitallah MA, Habib MA, Ben Mansour R (2012) Investigations of oxy-fuel combustion and oxygen permeation in an ITM reactor using a two-step oxy-combustion reaction kinetics model. J Membr Sci 432:1–12

    Article  Google Scholar 

  70. Nemitallah MA, Habib MA, Ben Mansour R, Ghoniem AF (2014) Design of an ion transport membrane reactor for gas turbine combustion application. J Membr Sci 450:60–71

    Article  Google Scholar 

  71. Mancini ND, Mitsos A (2011) Ion transport membrane reactors for oxy-combustion part II: analysis and comparison of alternatives. Energy 36:4721–4739

    Article  Google Scholar 

  72. Chandrasekhar S (1960) Radiative transfer. Dover Publications, New York, NY

    MATH  Google Scholar 

  73. Rajhi MA, Ben-Mansour R, Habib MA, Nemitallah MA, Andersson K (2014) Evaluation of gas radiation models in CFD modeling of oxy-combustion. Energy Convers Manag 81:83–97

    Article  Google Scholar 

  74. Nemitallah MA, Habib MA (2013) Experimental and numerical investigations of an atmospheric diffusion oxy-combustion flame in a gas turbine model combustor: oxy-combustion and emission characterization, flame stabilization and model validation. Appl Energy 11:401–415

    Article  Google Scholar 

  75. Lallemant N, Weber R (1996) A computationally efficient procedure for calculating gas radiative properties using the exponential wide band model. Int J Heat Mass Transfer 39:3273–3286

    Article  Google Scholar 

  76. Puig-Arnavat M, Søgaard M, Hjuler K, Ahrenfeldt J, Henriksen UB, Hendriksen PV (2015) Integration of oxygen membranes for oxygen production in cement plants. Energy 91:852–865

    Article  Google Scholar 

  77. Duan L, Yue L, Qu W, Yang Y (2015) Study on CO2 capture from molten carbonate fuel cell hybrid system integrated with oxygen ion transfer membrane. Energy 93:20–30

    Article  Google Scholar 

  78. Hwang KR, Park JW, Lee SW, Hong S, Lee C-B, Oh DK et al (2015) Catalytic combustion of the retentate gas from a CO2/H2 separation membrane reactor for further CO2 enrichment and energy recovery. Energy 90:1192–1198

    Article  Google Scholar 

  79. Chiesa P, Romano MC, Spallina V, Turi DM, Mancuso L (2013) Efficient low CO2 emissions power generation by mixed conducting membranes. Energy Procedia 37:905–913

    Article  Google Scholar 

  80. Manzolini G, Gazzani M, Turi DM, Macchi E (2013) Application of hydrogen selective membranes to IGCC. Energy Procedia 37:2274–2283

    Article  Google Scholar 

  81. Voleno A, Romano MC, Turi DM, Chiesa P, Ho MT, Wiley DE (2014) Post-combustion CO2 capture from natural gas combined cycles by solvent supported membranes. Energy Procedia 63:7389–7397

    Article  Google Scholar 

  82. Romano MC (2013) Ultra-high CO2 capture efficiency in CFB oxyfuel power plants by calcium looping process for CO2 recovery from purification units vent gas. Int J Greenh Gas Control 18:57–67

    Article  Google Scholar 

  83. Mancini ND, Mitsos A (2011) Ion transport membrane reactors for oxy-combustion part II: analysis and comparison of alternatives. Energy 36:4721e39

    Google Scholar 

  84. Habib MA, Nemitallah MA (2015) Design of an ion transport membrane reactor for application in fire tube boilers. Energy 81:787–801

    Article  Google Scholar 

  85. Nemitallah MA, Habib MA, Badr HM (2017) Design of a multi-can carbon-free gas turbine combustor utilizing multiple shell-and-tube OTRs for ZEPP applications. J Nat Gas Sci Eng 46:172–187

    Article  Google Scholar 

  86. Petric A, Huang P, Tietz F (2000) Evaluation of La–Sr–Co–Fe–O perovskites for solid oxide fuel cells and gas separation membranes. Solid State Ionics 135:719–725

    Article  Google Scholar 

  87. Li S, Jin W, Xu N, Shi J (1999) Synthesis and oxygen permeation properties of La0.2Sr0.8Co0.2Fe0.8O3−δ membranes. Solid State Ionics 124:161–170

    Article  Google Scholar 

  88. Hong J, Kirchen P, Ghoniem AF (2012) Numerical simulation of ion transport membrane reactors: oxygen permeation and transport and fuel conversion. J Membr Sci 85:407–408

    Google Scholar 

  89. Behrouzifar A, Atabak AA, Mohammadi T, Pak A (2012) Experimental investigation and mathematical modeling of oxygen permeation through dense Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) perovskite-type ceramic membranes. Ceram Int 38:4797–4811

    Article  Google Scholar 

  90. Chui E, Raithby G (1993) Computation of radiant heat transfer on a nonorthogonal mesh using the finite-volume method. Numer Heat Transfer 23(3):269–288

    Article  Google Scholar 

  91. Glarborg P, Bentzen LL (2007) Chemical effects of a high CO2 concentration in oxy-fuel combustion of methane. Energy Fuels 22:291–296

    Article  Google Scholar 

  92. Andersen J, Rasmussen CL, Giselsson T, Glarborg P (2009) Global combustion mechanisms for use in CFD modeling under oxy-fuel conditions. Energy Fuels 23:1379–1389

    Article  Google Scholar 

  93. Versteeg HK, Malalasekera W (1995) An introduction to computational fluid dynamics—the finite volume method. Longman Scientific and Technical

    Google Scholar 

  94. Nemitallah MA, Habib MA, Ben Mansour R (2013) Investigations of an ion transport membrane reactor specially designed for a power cycle. Appl Mech Mater 302:440–446

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Medhat A. Nemitallah .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nemitallah, M.A., Habib, M.A., Badr, H.M. (2019). Applications of OTRs in Gas Turbines and Boilers. In: Oxyfuel Combustion for Clean Energy Applications. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-10588-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10588-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10587-7

  • Online ISBN: 978-3-030-10588-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics