Skip to main content

Ion Transport Membranes (ITMs) for Oxygen Separation

  • Chapter
  • First Online:
  • 833 Accesses

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The high efficiency penalty associated with using cryogenic O2 separation units in oxy-combustion systems called for alternative methods for O2 production. One of these methods is the use of ion transport membranes (ITMs) for O2 separation from air. These ITMs have the capability of extracting oxygen from air at high temperatures (above 700 °C). The permeation of oxygen through the ion transport membranes depends on the membrane type, thickness, operating temperature, and the difference in oxygen partial pressure across the membrane.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Balachandran U, Kleefisch MS, Kobylinski TP, Morissette SL, Pei S (1997) Oxygen ion-conducting dense ceramic membranes. Assigned to Amoco Co., US Patent 5,639,437

    Google Scholar 

  2. Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review of state of the art. Ind Chem Eng 48(1):4638–4663

    Article  Google Scholar 

  3. Farooqui AE, Badr HM, Habib MA, Ben-Mansour R (2014) Numerical investigation of combustion characteristics in an oxygen transport reactor. Int J Energy Res 38(5):638–651

    Article  Google Scholar 

  4. Habib MA, Ahmed P, Ben-Mansour R, Badr HM, Kirchen P, Ghoniem AF (2013) Modeling of a combined ion transport and porous membrane reactor for oxy-combustion. J Membr Sci 446:230–243

    Article  Google Scholar 

  5. Ben-Mansour R, Habib MA, Badr HM, Nemitallah MA (2012) Characteristics of oxy-fuel combustion in an oxygen transport reactor. Energy Fuels 26(7):4599–4606

    Article  Google Scholar 

  6. Nemitallah MA, Habib MA, Mezghani K (2015) Experimental and numerical study of oxygen separation and oxy-combustion characteristics inside a button-cell LNO-ITM reactor. Energy 84:600–611

    Article  Google Scholar 

  7. Xu SJ, Thomson WJ (1999) Oxygen permeation rates through ion-conducting perovskite membranes. Chem Eng Sci 54:3839–3850

    Article  Google Scholar 

  8. Ruia Z, Lia Y, Lin YS (2009) Analysis of oxygen permeation through dense ceramic membranes with chemical reactions of finite rate. Chem Eng Sci 64:172–179

    Article  Google Scholar 

  9. Akin FT, Lin YS (2004) Oxygen permeation through oxygen ionic or mixed-conducting ceramic membranes with chemical reactions. J Membr Sci 231:133–146

    Article  Google Scholar 

  10. Habib MA, Ben Mansour R, Nemitallah MA (2013) Modeling of oxygen permeation through a LSCF ion transport membrane. Comput Fluids 76:1–10

    Article  Google Scholar 

  11. Hong J, Kirchen P, Ghoniem AF (2012) Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion. J Membr Sci 407:71–85

    Article  Google Scholar 

  12. Ben-Mansour R, Nemitallah MA, Habib MA (2013) Numerical investigation of oxygen permeation and methane oxy-combustion in a stagnation flow ion transport membrane reactor. Energy 54:322–332

    Article  Google Scholar 

  13. Nemitallah MA, Habib MA, BenMansour R (2013) Investigations of oxy-fuel combustion and oxygen permeation in an ITM reactor using a two-step oxy-combustion reaction kinetics model. J Membr Sci 432:1–12

    Article  Google Scholar 

  14. Hong J, Kirchen P, Ghoniem AF (2013) Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane. J Membr Sci 428:309–322

    Article  Google Scholar 

  15. Hunt A, Dimitrakopoulos G, Kirchen P, Ghoniem AF (2014) Measuring the oxygen profile and permeation flux across an ion transport (La0.9Ca0.1FeO3−δ) membrane and the development and validation of a multi-step surface exchange model. J Membr Sci 468:62–72

    Article  Google Scholar 

  16. Kirchen P, Apo DJ, Hunt A, Ghoniem AF (2013) A novel ion transport membrane reactor for fundamental investigations of oxygen permeation and oxy-combustion under reactive flow conditions. Proc Combust Inst 34:3463–3470

    Article  Google Scholar 

  17. Mancini ND, Mitsos A (2011) Ion transport membrane reactors for oxy-combustion; part II: analysis and comparison of alternatives. Energy 36:4721–4739

    Article  Google Scholar 

  18. Nemitallah MA, Habib MA, Ben-mansour R, Ghoniem AF (2014) Design of an ion transport membrane reactor for gas turbine combustion application. J Membr Sci 450:60–71

    Article  Google Scholar 

  19. Mezghani K, Hamza A, Habib MA, Lee D, Shao-Horn Y (2015) Effect of microstructure and thickness on oxygen permeation of La2NiO4+δ membranes. Ceram Int 42(1):666–672

    Article  Google Scholar 

  20. Habib MA, Ahmed P, Ben-Mansour R, Mezghani K, Alam Z, Shao-Horn Y, Ghoniem AF (2015) Experimental and numerical investigation of la2NiO4+δ membranes for oxygen separation: geometry optimization and model validation. J Energy Res Technol 137(3):03110

    Google Scholar 

  21. Wang L, Imashuku S, Grimaud A, Lee D, Mezghani K, Habib MA, Shao-Horn Y (2013) Enhancing oxygen permeation of electronically short-circuited oxygen-ion conductors by decorating with mixed ionic-electronic conducting oxides. ECS Electrochem Lett 2(11):77–81

    Article  Google Scholar 

  22. Imashuku S, Wang L, Mezghani K, Habib MA, Shao-Horn Y (2013) Oxygen permeation from oxygen ion-conducting membranes coated with porous metals or mixed ionic and electronic conducting oxides. J Electrochem Soc 160(11):148–153

    Article  Google Scholar 

  23. Habib MA, Badr HM, Ahmed SF, Ben-Mansour R, Mazghani K, Imashuku GJ, Shao-Horn Y, Mancini N, Mitsos A, Kirchen P, Ghoneim AF (2011) A review of recent developments in carbon capture utilizing oxy-fuel combustion in conventional and ion transport membrane systems. Int J Energy Res 35(9):741–764

    Article  Google Scholar 

  24. Salehi M, Pfaff EM, Junior RM, Bergmann CP, Diethelm S, Neururer C, Graule T, Grobety B, Clemens FJ (2013) Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) feedstock development and optimization for thermoplastic forming of thin planar and tubular oxygen separation membranes. J Membr Sci 443:237–245

    Article  Google Scholar 

  25. Baumann S, Meulenberg WA, Buchkremer HP (2013) Manufacturing strategies for asymmetric ceramic membranes for efficient separation of oxygen from air. J Eur Ceram Soc 33(7):1251–1261

    Article  Google Scholar 

  26. Li X, Kerstiens T, Markus T (2013) Oxygen permeability and phase stability of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite at intermediate temperatures. J Membr Sci 438:83–89

    Article  Google Scholar 

  27. Baumann S, Serra JM, Lobera MP, Escolástico S, Schulze-Küppers F, Meulenberg W (2011) Ultrahigh oxygen permeation flux through supported Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. J Membr Sc 377(1):198–205

    Google Scholar 

  28. Haworth P, Smart S, Glasscock J, Diniz da Costa JC (2011) Yttrium doped BSCF membranes for oxygen separation. Sep Purif Technol 81(1):88–93

    Google Scholar 

  29. Menzler NH, Han F, Van Gestel T, Schafbauer W, Schulze-Küppers F, Baumann S, Uhlenbruck S et al (2013) Application of thin-film manufacturing technologies to solid oxide fuel cells and gas separation membranes. Int J Appl Ceram Technol 10(3):421–427

    Article  Google Scholar 

  30. Buysse C, Kovalevsky A, Snijkers F, Buekenhoudt A, Mullens S, Luyten J, Kretzschmar J, Lenaerts S (2011) Development, performance and stability of sulfur-free, macrovoid-free BSCF capillaries for high temperature oxygen separation from air. J Membr Sci 372(1–2):239–248

    Article  Google Scholar 

  31. Liu H, Pang Z, Tan X, Shao Z, Sunarso J, Ding R, Liu S (2009) Enhanced oxygen permeation through perovskite hollow fiber membranes by methane activation. Ceram Int 35(4):1435–1439

    Article  Google Scholar 

  32. Hong J, Kirchen P, Ghoniem AF (2013) Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane. J Memb Sci 428:309–322

    Article  Google Scholar 

  33. Hong J, Kirchen P, Ghoniem AF (2012) Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion. J Memb Sci 407:71–85

    Article  Google Scholar 

  34. Amato A, Hudak R, Noble DR, Scarborough D, Peter AD, Seitzman JM, Lieuwen TC (2010) Methane oxy-combustion for low CO2 cycles: measurements and modeling of CO and O2 emissions. In: ASME turbo expo 2010: power for land, sea, and air, pp 213–222

    Google Scholar 

  35. Zanganeh KE, Shafeen A, Thambimuthu K (2005) A comparative study of refinery fuel gas oxy-fuel combustion options for CO2 capture using simulated process data. In: Greenhouse gas control technologies, pp 1117–1123

    Google Scholar 

  36. Luo H, Jiang H, Klande T, Liang F, Cao Z, Wang H, Caro J (2012) Rapid glycine-nitrate combustion synthesis of the CO2-stable dual phase membrane 40Mn1.5Co1.5O4-δ–60Ce0.9Pr0.1O2−δ for CO2 capture via an oxy-fuel process. J Membr Sci 423:450–458

    Article  Google Scholar 

  37. Dyer PN, Richards RE, Russek SL, Taylor DM (2000) Ion transport membrane technology for oxygen separation and syngas production. Solid State Ionics 134:21–33

    Article  Google Scholar 

  38. Miller CF, Chen J, Carolan MF, Foster EP (2014) Advances in ion transport membrane technology for syngas production. Catal Today 228:152–157

    Article  Google Scholar 

  39. Izquierdo U, Barrio VL, Cambra JF, Requies J, Güemez MB, Arias PL, Kolb G, Zapf R, Gutiérrez AM, Arraibi JR (2012) Hydrogen production from methane and natural gas steam reforming in conventional and microreactor reaction systems. Int J Hydrogen Energy 37:7026–7033

    Article  Google Scholar 

  40. Liu Z, Chu B, Zhai X, Jin Y, Cheng Y (2012) Total methanation of syngas to synthetic natural gas over Ni catalyst in a micro-channel reactor. Fuel 95:599–605

    Article  Google Scholar 

  41. Rostrup-Nielsen JR (1993) Production of synthesis gas. Catal Today 18:305–324

    Article  Google Scholar 

  42. Mokheimer EM, Hussain MI, Ahmed S, Habib MA, Al-Qutub AA (2015) On the modeling of steam methane reforming. J Energy Res Technol 137:012001

    Article  Google Scholar 

  43. Simakov DS, Wright MM, Ahmed S, Mokheimer EM, Román-Leshkov Y (2015) Solar thermal catalytic reforming of natural gas: a review on chemistry, catalysis and system design. Catal Sci Technol 5:1991–2016

    Article  Google Scholar 

  44. Sheu EJ, Mokheimer EM, Ghoniem AF (2015) A review of solar methane reforming systems. Int J Hydrogen Energy 40:12929–12955

    Article  Google Scholar 

  45. Said SAM, Simakov DS, Mokheimer EM, Habib MA, Ahmed S, Waseeuddin M et al (2015) Computational fluid dynamics study of hydrogen generation by low temperature methane reforming in a membrane reactor. Int J Hydrogen Energy 40(8):3158–3169

    Article  Google Scholar 

  46. Said SAM, Simakov DSA, Waseeuddin M, Román-Leshkov Y (2016) Solar molten salt heated membrane reformer for natural gas upgrading and hydrogen generation: a CFD model. Sol Energy 124:163–176

    Article  Google Scholar 

  47. Sheu EJ, Mitsos A, Eter AA, Mokheimer EM, Habib MA, Al-Qutub A (2012) A review of hybrid solar–fossil fuel power generation systems and performance metrics. J Sol Energy Eng 134(4):041006

    Article  Google Scholar 

  48. Sheu EJ, Mokheimer EM, Ghoniem AF (2015) Dry redox reforming hybrid power cycle: performance analysis and comparison to steam redox reforming. Int J Hydrogen Energy 40:2939–2949

    Article  Google Scholar 

  49. Delsman ER (2005) Microstructured reactors for a portable hydrogen production unit. Ph.D thesis, Technische Universiteit Eindhoven, Eindhoven

    Google Scholar 

  50. Christopher CM, Bennett DL, Carolan MF, Miller CF, Steppan JJ, Waldron WE (2006) ITM syngas: ceramic membrane technology for lower cost conversion of natural gas. In: AIChE Spring National Meeting 25, 2006

    Google Scholar 

  51. Taamallah S, Vogiatzaki K, Alzahrani F, Mokheimer EM, Habib MA, Ghoniem AF (2015) Fuel flexibility, stability and emissions in premixed hydrogen-rich gas turbine combustion: technology, fundamentals, and numerical simulations. Appl Energy 154:1020–1047

    Google Scholar 

  52. Alzahrani FM, Sanusi YS, Vogiatzaki K, Ghoniem AF, Habib MA, Mokheimer EM (2015) Evaluation of the accuracy of selected syngas chemical mechanisms. J Energy Res Technol 137:042201

    Google Scholar 

  53. Mokheimer EM, Sanusi YS, Habib MA (2016) Numerical study of hydrogen-enriched methane–air combustion under ultra-lean conditions. Int J Energy Res 40(6):743–762

    Article  Google Scholar 

  54. Sanusi YS, Habib MA, Mokheimer EM (2015) Experimental study on the effect of hydrogen enrichment of methane on the stability and emission of nonpremixed swirl stabilized combustor. J Energy Res Technol 137:032203

    Google Scholar 

  55. Schubert K, Brandner J, Fichtner M, Linder G, Schygulla U, Wenka A (2001) Microstructure devices for applications in thermal and chemical process engineering. Microscale Thermophys Eng 5:17–39

    Article  Google Scholar 

  56. Ehrfeld W, Hessel V, Löwe H (2000) Microreactors: new technology for modern chemistry. Wiley-VCH, Weinheim, p 2000

    Book  Google Scholar 

  57. Vorontsov VA, Gribovskiy AG, Makarshin LI, Andreev DV, Ylianitsky VY, Parmon VN (2014) Influence of a reaction mixture streamline on partial oxidation of methane in an asymmetric microchannel reactor. Int J Hydrogen Energy 39:325–330

    Article  Google Scholar 

  58. Enger BC, Walmsley J, Bjørgum E, Lødeng R, Pfeifer P, Schubert K, Holmen A, Venvik HJ (2008) Performance and SEM characterization of Rh impregnated microchannel reactors in the catalytic partial oxidation of methane and propane. Chem Eng J 144:489–501

    Article  Google Scholar 

  59. Schneider A, Mantzaras J, Jansohn P (2006) Experimental and numerical investigation of the catalytic partial oxidation of CH4/O2 mixtures diluted with H2O and CO2 in a short contact time reactor. Chem Eng Sci 61:4634–4649

    Article  Google Scholar 

  60. Sadykov V, Bobrova L, Pavlova S, Simagina V, Makarshin L, Parmon V, Ross JRH, Veen ACV (2012) Syngas generation from hydrocarbons and oxygenates with structured, catalysts. Nova Science Publishers, New York

    Google Scholar 

  61. Enger BC, Lødeng R, Holmen A (2008) A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Appl Catal A 346:1–27

    Article  Google Scholar 

  62. Vernikovskaya NV, Bobrova LN, Pinaeva LG, Sadykov VA, Zolotarskii IA, Sobyanin VA, Buyakou I, Kalinin V, Zhdanok S (2007) Transient behavior of the methane partial oxidation in a short contact time reactor: modeling on the base of catalyst detailed chemistry. Chem Eng J 134:180–189

    Article  Google Scholar 

  63. Silva FA, Resende KA, Da Silva AM, De Souza KR, Mattos LV, Montes M, Souza-Aguiar EF, Noronha FB, Hori CE (2012) Syngas production by partial oxidation of methane over Pt/CeZrO2/Al2O3 catalysts. Catal Today 180(1):111–116

    Article  Google Scholar 

  64. Tsai CY, Dixon AG, Moser WR, Ma YH (1997) Dense perovskite membrane reactors for the partial oxidation of methane to syngas. AIChE J 43:2741

    Article  Google Scholar 

  65. Li S, Jin W, Huang P, Xu N, Shi J, Payzant MZEA, Ma YH, Hu MZC (1999) Perovskite-related ZrO2-doped SrCO0.4Fe0.6O3−δ membrane for oxygen permeation. AIChE J 45:276

    Google Scholar 

  66. Yang C, Xu N, Shi J (1998) Experimental and modeling study on a packed-bed membrane reactor for partial oxidation of methane to formaldehyde. Ind Eng Chem Res 37:2601

    Article  Google Scholar 

  67. Balachandran U, Dusk JT, Maiya PS, Ma B, Mieville RL, Kleefisch MS, Udovich CA (1997) Ceramic membrane reactor for converting methane to syngas. Catal Today 36:265

    Article  Google Scholar 

  68. Habib MA, Salaudeen SA, Nemitallah MA, Ben-Mansour R, Mokheimer EM (2016) Numerical investigation of syngas oxy-combustion inside a LSCF-6428 oxygen transport membrane reactor. Energy 96:654–665

    Google Scholar 

  69. Nemtallah MA, Habib MA (2017) Numerical investigation of liquid methanol evaporation and oxy-combustion in a button-cell ITM reactor. Appl Therm Eng 112:378–391

    Article  Google Scholar 

  70. Smith JB, Norby T (2006) On the steady state oxygen permeation through La2NiO4+δ membranes. J Electrochem Soc 153:233–238

    Article  Google Scholar 

  71. Mancini ND, Mitsos A (2011) Ion transport membrane reactors for oxy-combustion-part I: intermediate fidelity modeling. Energy 36:4701–4720

    Article  Google Scholar 

  72. O’Rourke PJ (1981) Collective drop effects on vaporizing liquid sprays. Ph.D thesis, Princeton University, Princeton, New Jersey

    Google Scholar 

  73. Taylor GI (1963) The shape and acceleration of a drop in a high speed air stream. Technical report in the scientific papers of G.I

    Google Scholar 

  74. O’Rourke PJ, Amsden AA (1987) The TAB method for numerical calculation of spray droplet breakup. SAE technical paper, SAE:872089

    Google Scholar 

  75. Ranz WE, Marshall WR (1952) Evaporation from drops, part II. Chem Eng Prog 48:173–180

    Google Scholar 

  76. Lacas F, Leroux B, Darabiha N (2005) Experimental study of air dilution in oxy-liquid fuel flames. Proc Combust Inst 30:2037–2045

    Article  Google Scholar 

  77. Yu S-C, Huang C-W, Liao C-H, Wu JCS, Chang S-T, Chen K-H (2011) A novel membrane reactor for separating hydrogen and oxygen in photocatalytic water splitting. J Memb Sci 382:291–299. https://doi.org/10.1016/j.memsci.2011.08.022

    Article  Google Scholar 

  78. Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43:7520–7535. https://doi.org/10.1039/C3CS60378D

    Article  Google Scholar 

  79. Maeda K (2011) Photocatalytic water splitting using semiconductor particles: history and recent developments. J Photochem Photobiol C Photochem Rev 12:237–268. https://doi.org/10.1016/j.jphotochemrev.2011.07.001

    Article  Google Scholar 

  80. Kato H, Kudo A (2003) Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts. Catal Today 78:561–569. https://doi.org/10.1016/S0920-5861(02)00355-3

    Article  Google Scholar 

  81. Park CY, Lee TH, Dorris SE, Lu Y, Balachandran U (2011) Oxygen permeation and coal-gas-assisted hydrogen production using oxygen transport membranes. Int J Hydrogen Energy 36:9345–9354. https://doi.org/10.1016/j.ijhydene.2011.04.090

    Article  Google Scholar 

  82. Park CY, Lee TH, Dorris SE, Balachandran U (2010) Hydrogen production from fossil and renewable sources using an oxygen transport membrane. Int J Hydrogen Energy 35:4103–4110. https://doi.org/10.1016/j.ijhydene.2010.02.025

    Article  Google Scholar 

  83. Mundschau MV, Xie X, Evenson CR IV, Sammells AF (2006) Dense inorganic membranes for production of hydrogen from methane and coal with carbon dioxide sequestration. Catal Today 118:12–23. https://doi.org/10.1016/j.cattod.2006.01.042

    Article  Google Scholar 

  84. Rahimpour MR, Arab Aboosadi Z, Jahanmiri AH (2012) Synthesis gas production in a novel hydrogen and oxygen perm-selective membranes tri-reformer for methanol production. J Nat Gas Sci Eng 9:149–159. https://doi.org/10.1016/j.jngse.2012.06.007

    Article  Google Scholar 

  85. Song SJ, Moon JH, Lee TH, Dorris SE, Balachandran U (2008) Thickness dependence of hydrogen permeability for Ni–BaCe0.8Y0.2O3−δ. Solid State Ionics 179:1854–1857. https://doi.org/10.1016/j.ssi.2008.05.012

  86. Jeon SY, Choi MB, Park CN, Wachsman ED, Song SJ (2011) High sulfur tolerance dual-functional cermet hydrogen separation membranes. J Memb Sci 382:323–327. https://doi.org/10.1016/j.memsci.2011.08.024

    Article  Google Scholar 

  87. Balachandran U, Lee TH, Dorris SE (2007) Hydrogen production by water dissociation using mixed conducting dense ceramic membranes. Int J Hydrogen Energy 32:451–456. https://doi.org/10.1016/j.ijhydene.2006.05.010

    Article  Google Scholar 

  88. Balachandran U, Lee TH, Wang S, Dorris SE (2004) Use of mixed conducting membranes to produce hydrogen by water dissociation. Int J Hydrogen Energy 29:291–296. https://doi.org/10.1016/S0360-3199(03)00134-4

    Article  Google Scholar 

  89. Jeon SY, Im HN, Singh B, Hwang JH, Song SJ (2013) A thermodynamically stable La2NiO4/Gd0.1Ce0.9O1.95 bilayer oxygen transport membrane in membrane-assisted water splitting for hydrogen production. Ceram Int 39:3893–3899. https://doi.org/10.1016/j.ceramint.2012.10.233

  90. Xu SJ, Thomson WJ (1997) Perovskite-type oxide membranes for the oxidative coupling of methane. AIChE J 43:2731–2740. https://doi.org/10.1002/aic.690431319

    Article  Google Scholar 

  91. Kharton VV, Yaremchenko AA, Kovalevsky AV, Viskup AP, Naumovich EN, Kerko PF (1999) Perovskite-type oxides for high-temperature oxygen separation membranes. J Memb Sci 163:307–317. https://doi.org/10.1016/S0376-7388(99)00172-6

    Article  Google Scholar 

  92. Li W, Zhu X, Cao Z, Wang W, Yang W (2015) Mixed ionic-electronic conducting (MIEC) membranes for hydrogen production from water splitting. Int J Hydrogen Energy 40:3452–3461. https://doi.org/10.1016/j.ijhydene.2014.10.080

    Article  Google Scholar 

  93. Naito H, Arashi H (1995) Hydrogen production from direct water splitting at high temperatures using a ZrO2–TiO2–Y2O3 membrane. Solid State Ionics 79:366–370. https://doi.org/10.1016/0167-2738(95)00089-O

    Article  Google Scholar 

  94. Lede J, Lapicque F, Villermaux J (1983) Production of hydrogen by direct thermal decomposition of water. Int J Hydrogen Energy 8:675–679. https://doi.org/10.1016/0360-3199(83)90175-1

    Article  Google Scholar 

  95. Jiang H, Cao Z, Schirrmeister S, Schiestel T, Caro J (2010) A coupling strategy to produce hydrogen and ethylene in a membrane reactor. Angew Chemie Int Ed 49:5656–5660. https://doi.org/10.1002/anie.201000664

    Article  Google Scholar 

  96. Jiang H, Liang F, Czuprat O, Efimov K, Feldhoff A, Schirrmeister S et al (2010) Hydrogen production by water dissociation in surface-modified BaCo(x)Fe(y)Zr(1-x-y)O(3-delta) hollow-fiber membrane reactor with improved oxygen permeation. Chemistry 16:7898–7903. https://doi.org/10.1002/chem.200902494

    Article  Google Scholar 

  97. Jiang H, Wang H, Liang F, Werth S, Schirrmeister S, Schiestel T et al (2010) Improved water dissociation and nitrous oxide decomposition by in situ oxygen removal in perovskite catalytic membrane reactor. Catal Today 156:187–190. https://doi.org/10.1016/j.cattod.2010.02.027

    Article  Google Scholar 

  98. Jiang H, Wang H, Werth S, Schiestel T, Caro J (2008) Simultaneous production of hydrogen and synthesis gas by combining water splitting with partial oxidation of methane in a hollow-fiber membrane reactor. Angew Chem Int Ed 47:9341–9344. https://doi.org/10.1002/anie.200803899

    Article  Google Scholar 

  99. Evdou A, Nalbandian L, Zaspalis VT (2008) Perovskite membrane reactor for continuous and isothermal redox hydrogen production from the dissociation of water. J Memb Sci 325:704–711. https://doi.org/10.1016/j.memsci.2008.08.042

    Article  Google Scholar 

  100. Nalbandian L, Evdou A, Zaspalis V (2009) La1−xSrxMO3 (M = Mn, Fe) perovskites as materials for thermochemical hydrogen production in conventional and membrane reactors. Int J Hydrogen Energy 34:7162–7172. https://doi.org/10.1016/j.ijhydene.2009.06.076

    Article  Google Scholar 

  101. Balachandran U, Dorris SE, Lu Y, Emerson JE, Park CY, Lee TH, et al (2010) Development of dense ceramic membranes for hydrogen separation. Adv Membr Technol Appl 3:1–41. https://doi.org/10.1016/s0167-2991(01)80347-5

  102. Ikeguchi M, Ishii K, Sekine Y, Kikuchi E, Matsukata M (2005) Improving oxygen permeability in SrFeCo0.5Ox asymmetric membranes by modifying support-layer porous structure. Mater Lett 59:1356–1360. https://doi.org/10.1016/j.matlet.2004.12.042

  103. Ikeguchi M, Yoshino Y, Kanie K, Nomura M, Kikuchi E, Matsukata M (2003) Effects of preparation method on oxygen permeation properties of SrFeCo0.5Ox membrane. Sep Purif Technol 32:313–318. https://doi.org/10.1016/s1383-5866(03)00048-0

  104. Ma B, Balachandran U (1998) Phase stability of SrFeCo0.5Ox in reducing environments. Mater Res Bull 33:223–236. https://doi.org/10.1016/s0025-5408(97)00214-6

  105. Franca RV, Thursfield A, Metcalfe IS (2012) La 0.6Sr0.4Co0.2Fe0.8O3 microtubular membranes for hydrogen production from water splitting. J Memb Sci 389:173–181. https://doi.org/10.1016/j.memsci.2011.10.027

  106. Lee TH, Park CY, Dorris SEBU (2008) Hydrogen production from steam using oxygen transport membranes. ECS Trans 13:379–384

    Article  Google Scholar 

  107. Balachandran, Lee TH, Dorris SE (2007) Hydrogen production by water dissociation using mixed conducting dense ceramic membranes. Int J Hydrogen Energy 32:451–456. https://doi.org/10.1016/j.ijhydene.2006.05.010

  108. Meng X, Shang Y, Meng B, Yang N, Tan X, Sunarso J, et al (2016) Bi-functional performances of BaCe0.95Tb0.05O3−δ-based hollow fiber membranes for power generation and hydrogen permeation. JECS J Eur Ceram Soc. https://doi.org/10.1016/j.jeurceramsoc.2016.06.041

  109. Albo J, Luis P, Irabien A (2010) Carbon dioxide capture from flue gases using a cross-flow membrane contactor and the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate. Ind Eng Chem Res 49:11045–11051. https://doi.org/10.1021/ie1014266

    Article  Google Scholar 

  110. Huang CH, Tan CS (2014) A review: CO2 utilization. Aerosol Air Qual Res 14:480–499. https://doi.org/10.4209/aaqr.2013.10.0326

    Article  Google Scholar 

  111. Fernández F, González-López C (2012) Conversion of CO2 into biomass by microalgae: how realistic a contribution may it be to significant CO2 removal? Appl Microbiol

    Google Scholar 

  112. Dai W, Luo S, Yin S, Au C (2009) The direct transformation of carbon dioxide to organic carbonates over heterogeneous catalysts. Appl Catal Gen

    Google Scholar 

  113. Razali N, Lee K, Bhatia S, Mohamed A (2012) Heterogeneous catalysts for production of chemicals using carbon dioxide as raw material: a review. Renew Sustain

    Google Scholar 

  114. Ganesh I (2011) Conversion of carbon dioxide to methanol using solar energy. Curr Sci

    Google Scholar 

  115. Olah G (2013) Towards oil independence through renewable methanol chemistry. Angew Chemie Int Ed

    Google Scholar 

  116. Omae I (2012) Recent developments in carbon dioxide utilization for the production of organic chemicals. Coord Chem Rev

    Google Scholar 

  117. Rihko-Struckmann, L, Peschel A (2010) Assessment of methanol synthesis utilizing exhaust CO2 for chemical storage of electrical energy. Ind Eng Chem Res

    Google Scholar 

  118. Nguyen VN, Blum L (2015) Syngas and synfuels from H2O and CO2: current status. Chem Ing Tech 87(4):354–375

    Article  Google Scholar 

  119. Fu Q, Mabilat C, Zahid M, Brisse A, Gautier L (2010) Syngas production via high-temperature steam/CO2 co-electrolysis: an economic assessment. Energy Environ Sci 3(10):1382

    Article  Google Scholar 

  120. Agrafiotis C, Roeb M, Sattler C (2015) A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles. Renew Sustain Energy Rev 42:254–285

    Article  Google Scholar 

  121. Itoh N, Sanchez MA, Xu W-C, Haraya K, Hongo M (1993) Application of a membrane reactor system to thermal decomposition of CO2. J Memb Sci 77(2):245–253

    Article  Google Scholar 

  122. Graves C, Ebbesen SD, Mogensen M (2011) Co-electrolysis of CO2 and H2O in solid oxide cells: performance and durability. Solid State Ionics 192(1):398–403

    Article  Google Scholar 

  123. Zhan Z, Kobsiriphat W, Wilson JR, Pillai M, Kim I, Barnet SA (2009) Syngas production by coelectrolysis of CO2/H2O: the basis for a renewable energy cycle. Energy Fuels 23(6):3089–3096

    Google Scholar 

  124. Nigara Y, Cales B (1986) Production of carbon monoxide by direct thermal splitting of carbon dioxide at high temperature. Bull Chem Soc Jpn 59(6):1997–2002

    Article  Google Scholar 

  125. Oehlschlaeger MA, Davidson DF, Jeffries JB, Hanson RK (2005) Carbon dioxide thermal decomposition: observation of incubation. Zeitschrift für Phys Chemie 219(5):555–567

    Google Scholar 

  126. Galvez ME, Loutzenhiser PG, Hischier I, Steinfeld A (2008) CO2 splitting via two-step solar thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions: thermodynamic analysis. Energy Fuels 22:3544–3550

    Article  Google Scholar 

  127. Stamatiou A, Loutzenhiser PG, Steinfeld A (2010) Solar syngas production from H2O and CO2 via two-step thermochemical cycles based on Zn/ZnO and FeO/Fe3O4 redox reactions: kinetic analysis. Energy Fuels 24(4):2716–2722

    Article  Google Scholar 

  128. Venstrom LJ, Davidson JH (2011) Splitting water and carbon dioxide via the heterogeneous oxidation of zinc vapor: thermodynamic considerations. J Sol Energy Eng 133(1):011017

    Google Scholar 

  129. Chen Z, Kang P, Zhang M-T, Stoner BR, Meyer TJ (2013) Cu(ii)/Cu(0) electrocatalyzed CO2 and H2O splitting. Energy Environ Sci 6(3):813

    Article  Google Scholar 

  130. Furler P, Scheffe JR, Steinfeld A (2012) Syngas production by simultaneous splitting of H2O and CO2 via ceria redox reactions in a high-temperature solar reactor. Energy Environ Sci 5(3):6098

    Article  Google Scholar 

  131. Furler P, Scheffe J, Gorbar M, Moes L, Vogt U, Steinfeld A (2012) Solar thermochemical CO2 splitting utilizing a reticulated porous ceria redox system. Energy Fuels 26(11):7051–7059

    Article  Google Scholar 

  132. Lorentzou S, Karagiannakis G, Pagkoura C, Zygogianni A (2011) CO2 and H2O splitting for thermochemical production of solar fuels using nonstoichiometric ceria and ceria/zirconia solid solutions. Energy Fuels 25:4836–4845

    Article  Google Scholar 

  133. Smestad GP, Steinfeld A (2012) Review: photochemical and thermochemical production of solar fuels from H2O and CO2 using metal oxide catalysts. Ind Eng Chem Res 51:11828–11840

    Article  Google Scholar 

  134. Lahijani P, Zainal ZA, Mohammadi M, Mohamed AR (2015) Conversion of the greenhouse gas CO2 to the fuel gas CO via the Boudouard reaction: a review. Renew Sustain Energy Rev 41:615–632

    Article  Google Scholar 

  135. Rayne S (2008) Thermal carbon dioxide splitting: a summary of the peer-reviewed scientific literature. Nat Preced 1(250):1–17

    Google Scholar 

  136. Ganesh I (2011) Conversion of carbon dioxide to methanol using solar energy. Curr Sci 101:731–733. https://doi.org/10.4236/msa.2011.210190

    Article  Google Scholar 

  137. Ganesh I (2014) Conversion of carbon dioxide into methanol—a potential liquid fuel: fundamental challenges and opportunities (a review). Renew Sustain Energy Rev 31:221–257. https://doi.org/10.1016/j.rser.2013.11.045

    Article  Google Scholar 

  138. Thomas D, Thomas B, Jesse Goellner RM (2013) Novel CO2 utilization concepts. https://doi.org/10.1016/j.enconman.2007.12.029

  139. Thomas GA, Mcclure TGM (1991) Feasibility of cyclic CO2 injection for light-oil recovery. 179–184

    Google Scholar 

  140. Torabi F, Qazvini Firouz A, Kavousi A, Asghari K (2012) Comparative evaluation of immiscible, near miscible and miscible CO2 huff-n-puff to enhance oil recovery from a single matrix-fracture system (experimental and simulation studies). Fuel 93:443–453. https://doi.org/10.1016/j.fuel.2011.08.037

    Article  Google Scholar 

  141. Li JH, Bao R, Qin B, Jiang T (2013) Numerical simulation of foamy oil stability using natural gas huff and puff for ultra-deep heavy oil reservoir, vol 318. https://doi.org/10.4028/www.scientific.net/AMM.318.405

  142. Li G, Li X (2011) Numerical simulation for gas production from hydrate accumulated in Shenhu area, South China sea, using huff and puff method. Huagong Xuebao/CIESC J 62:458–468

    Google Scholar 

  143. Gamadi TD, Sheng JJ, Soliman MY, Menouar H, Watson MC, Emadibaladehi H (2014)An experimental study of cyclic CO2 injection to improve shale oil recovery. In: SPE improved oil recovery symposium, pp 1–9. https://doi.org/10.2118/169142-ms

  144. Armstrong K, Styring P (2015) Assessing the potential of utilization and storage strategies for post-combustion CO2 emissions reduction. Front Energy Res 3:1–9. https://doi.org/10.3389/fenrg.2015.00008

    Article  Google Scholar 

  145. Zhang Y, Chan JYG (2010) Sustainable chemistry: imidazolium salts in biomass conversion and CO2 fixation. Energy Environ Sci 3:408–417. https://doi.org/10.1039/B914206A

    Article  Google Scholar 

  146. Satthawong R, Koizumi N, Song C, Prasassarakich P (2015) Light olefin synthesis from CO2 hydrogenation over K-promoted Fe–Co bimetallic catalysts. Catal Today 251:34–40. https://doi.org/10.1016/j.cattod.2015.01.011

    Article  Google Scholar 

  147. Aresta M, Dibenedetto A, Angelini A (2013) The changing paradigm in CO2 utilization. J CO2 Util 3–4:65–73. https://doi.org/10.1016/j.jcou.2013.08.001

  148. Benemann JR (1997) CO2 mitigation with microalgae systems. Energy Convers Manag 38:S475–S479. https://doi.org/10.1016/S0196-8904(96)00313-5

    Article  Google Scholar 

  149. Wilson MHH, Groppo J, Placido A, Graham S, Morton SA, Santillan-Jimenez E, et al (2014) CO2 recycling using microalgae for the production of fuels. Appl Petrochem Res 4(1):41–43. https://doi.org/10.1007/s13203-014-0052-3

  150. Wang B, Li Y, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718. https://doi.org/10.1007/s00253-008-1518-y

    Article  Google Scholar 

  151. Song C (2002) CO2 Conversion and utilization: an overview. CO2 Convers Util 809:1–2. https://doi.org/10.1021/bk-2002-0809.ch001

  152. Dilmore R, Lu P, Allen D, Soong Y, Hedges S, Fu JK et al (2008) Sequestration of CO2 in mixtures of bauxite residue and saline wastewater. Energy Fuels 22:343–353. https://doi.org/10.1021/ef7003943

    Article  Google Scholar 

  153. Power G, Gräfe M, Klauber C (2011) Bauxite residue issues: I. Current management, disposal and storage practices. Hydrometallurgy 108:33–45. https://doi.org/10.1016/j.hydromet.2011.02.006

  154. Descoins C, Mathlouthi M, Le Moual M, Hennequin J (2006) Carbonation monitoring of beverage in a laboratory scale unit with on-line measurement of dissolved CO2. Food Chem 95:541–553. https://doi.org/10.1016/j.foodchem.2004.11.031

    Article  Google Scholar 

  155. Oelkers EH, Gislason SR, Matter J (2008) Mineral carbonation of CO2. Elements 4:333–337. https://doi.org/10.2113/gselements.4.5.333

    Article  Google Scholar 

  156. North M, Pasquale R, Young C (2010) Synthesis of cyclic carbonates from epoxides and CO2. Green Chem 12:1514. https://doi.org/10.1039/c0gc00065e

    Article  Google Scholar 

  157. Ma J, Sun N, Zhang X, Zhao N, Xiao F, Wei W et al (2009) A short review of catalysis for CO2 conversion. Catal Today 148:221–231. https://doi.org/10.1016/j.cattod.2009.08.015

    Article  Google Scholar 

  158. Chen Y, Brown PH, Hu K, Black RM, Prior RL, Ou B, et al (2011) Supercritical CO2 decaffeination of unroasted coffee beans produces melanoidins with distinct NF-κB inhibitory activity. J Food Sci 76. https://doi.org/10.1111/j.1750-3841.2011.02304.x

  159. Franca AS (2016) Coffee: decaffeination. Encycl Food Health 232–236. http://dx.doi.org/10.1016/B978-0-12-384947-2.00183-5

  160. Zhan BJ, Xuan DX, Poon CS, Shi CJ (2016) Effect of curing parameters on CO2 curing of concrete blocks containing recycled aggregates. Cem Concr Compos 71:122–130. https://doi.org/10.1016/j.cemconcomp.2016.05.002

    Article  Google Scholar 

  161. Zhan B, Poon C, Shi C (2013) CO2 curing for improving the properties of concrete blocks containing recycled aggregates. Cem Concr Compos 42:1–8. https://doi.org/10.1016/j.cemconcomp.2013.04.013

    Article  Google Scholar 

  162. Zhang X, Han B (2007) Cleaning using CO2-based solvents. Clean Soil, Air, Water 35:223–229. https://doi.org/10.1002/clen.200700007

    Article  Google Scholar 

  163. Zuo-tang W, Guo-xiong W, Rudolph V, Diniz da Costa JC, Pei-ming H, Lin X (2009) Simulation of CO2-geosequestration enhanced coal bed methane recovery with a deformation-flow coupled model. Proc Earth Planet Sci 1:81–89. https://doi.org/10.1016/j.proeps.2009.09.015

  164. Ozdemir E (2009) Modeling of coal bed methane (CBM) production and CO2 sequestration in coal seams. Int J Coal Geol 77:145–152. https://doi.org/10.1016/j.coal.2008.09.003

    Article  Google Scholar 

  165. Pruess K (2006) Enhanced geothermal systems (EGS) using CO2 as working fluid-a novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics 35:351–367. https://doi.org/10.1016/j.geothermics.2006.08.002

    Article  Google Scholar 

  166. Olasolo P, Juárez MC, Morales MP, Damico S, Liarte IA (2016) Enhanced geothermal systems (EGS): a review. Renew Sustain Energy Rev 56:133–144. https://doi.org/10.1016/j.rser.2015.11.031

    Article  Google Scholar 

  167. Ferguson RC, Nichols C, Van Leeuwen T, Kuuskraa VA (2009) Storing CO2 with enhanced oil recovery. Energy Proc 1:1989–1996. https://doi.org/10.1016/j.egypro.2009.01.259

    Article  Google Scholar 

  168. McGinnis RL, Hancock NT, Nowosielski-Slepowron MS, McGurgan GD (2013) Pilot demonstration of the NH3/CO2 forward osmosis desalination process on high salinity brines. Desalination 312:67–74. https://doi.org/10.1016/j.desal.2012.11.032

    Article  Google Scholar 

  169. Al-Hallaj S, Parekh S, Farid MM, Selman JR (2006) Solar desalination with humidification-dehumidification cycle: review of economics. Desalination 195:169–186. https://doi.org/10.1016/j.desal.2005.09.033

    Article  Google Scholar 

  170. El-Naas MH, Al-Marzouqi AH, Chaalal O (2010) A combined approach for the management of desalination reject brine and capture of CO2. Desalination 251:70–74. https://doi.org/10.1016/j.desal.2009.09.141

    Article  Google Scholar 

  171. Guo TN, Fu ZM (2007) The fire situation and progress in fire safety science and technology in China. Fire Saf J 42:171–182. https://doi.org/10.1016/j.firesaf.2006.10.005

    Article  Google Scholar 

  172. Tilman D, Reich P, Phillips H, Menton M, Patel A, Vos E et al (2000) Fire suppression and ecosystem carbon storage. Ecology 81:2680–2685

    Article  Google Scholar 

  173. Lenihan JM, Bachelet D, Neilson RP, Drapek R (2008) Simulated response of conterminous United States ecosystems to climate change at different levels of fire suppression, CO2 emission rate, and growth response to CO2. Glob Planet Change 64:16–25. https://doi.org/10.1016/j.gloplacha.2008.01.006

    Article  Google Scholar 

  174. Ahmed J, Alam T (2012) An overview of food packaging: material selection and the future of packaging. In: Handbook of food process design, p 1237–1283. https://doi.org/10.1002/9781444398274.ch41

  175. Han JH (2005) Innovations in food packaging. In: Innovations in food ackaging, p 517. https://doi.org/10.1016/b978-012311632-1/50046-2

  176. Vaclavik V, Christian E (2008) Food preservation and processing. Essent Food Sci 425–446. https://doi.org/10.1007/978-0-387-69940-0_17

  177. Schaub T, Paciello RA (2011) A process for the synthesis of formic acid by CO2 hydrogenation: thermodynamic aspects and the role of CO. Angew Chemie Int Ed 50:7278–7282. https://doi.org/10.1002/anie.201101292

    Article  Google Scholar 

  178. Kortlever R, Balemans C, Kwon Y, Koper MTM (2015) Electrochemical CO2 reduction to formic acid on a Pd-based formic acid oxidation catalyst. Catal Today 244:58–62. https://doi.org/10.1016/j.cattod.2014.08.001

    Article  Google Scholar 

  179. Prior SA, Brett Runion G, Christopher Marble S, Rogers HH, Gilliam CH, Allen Torbert H (2011) A review of elevated atmospheric CO2 effects on plant growth and water relations: implications for horticulture. HortScience 46:158–162

    Article  Google Scholar 

  180. Christopher Marble S, Prior SA, Brett Runion G, Allen Torbert H, Gilliam CH, Fain GB (2011) The importance of determining carbon sequestration and greenhouse gas mitigation potential in ornamental horticulture. HortScience 46:240–244

    Article  Google Scholar 

  181. Huff CA, Sanford MS (2011) Cascade catalysis for the homogeneous hydrogenation of CO2 to Methanol. J Am Chem Soc 133:18122–18125. https://doi.org/10.1021/ja208760j

    Article  Google Scholar 

  182. Zhang C, Jun KW, Kwak G, Lee YJ, Park HG (2016) Efficient utilization of carbon dioxide in a gas-to-methanol process composed of CO2/steam-mixed reforming and methanol synthesis. J CO2 Util 16:1–7. https://doi.org/10.1016/j.jcou.2016.05.005

  183. Wang WH, Himeda Y, Muckerman JT, Manbeck GF, Fujita E (2015) CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem Rev 115:12936–12973. https://doi.org/10.1021/acs.chemrev.5b00197

    Article  Google Scholar 

  184. Kothandaraman J, Goeppert A, Czaun M, Olah GA, Prakash GKS (2016) Conversion of CO2 from air into methanol using a polyamine and a homogeneous ruthenium catalyst. J Am Chem Soc 138:778–781. https://doi.org/10.1021/jacs.5b12354

    Article  Google Scholar 

  185. Huijgen WJJ, Comans RNJ, Witkamp GJ (2007) Cost evaluation of CO2 sequestration by aqueous mineral carbonation. Energy Convers Manag 48:1923–1935. https://doi.org/10.1016/j.enconman.2007.01.035

    Article  Google Scholar 

  186. Mayoral MC, Andrés JM, Gimeno MP (2013) Optimization of mineral carbonation process for CO2 sequestration by lime-rich coal ashes. Fuel 106:448–454. https://doi.org/10.1016/j.fuel.2012.11.042

    Article  Google Scholar 

  187. Huisman GW, Gray D (2002) Towards novel processes for the fine-chemical and pharmaceutical industries. Curr Opin Biotechnol 13:352–358. https://doi.org/10.1016/S0958-1669(02)00335-X

    Article  Google Scholar 

  188. Kellaway I (2001) Transport processes in pharmaceutical systems, vol 228. https://doi.org/10.1016/s0378-5173(01)00823-7

  189. Nalawade SP, Picchioni F, Janssen LPBM (2006) Supercritical carbon dioxide as a green solvent for processing polymer melts: processing aspects and applications. Prog Polym Sci 31:19–43. https://doi.org/10.1016/j.progpolymsci.2005.08.002

    Article  Google Scholar 

  190. Cooper AI (2000) Polymer synthesis and processing using supercritical carbon dioxide. J Mater Chem 10:207–234. https://doi.org/10.1039/a906486i

    Article  Google Scholar 

  191. Pipitone G, Bolland O (2009) Power generation with CO2 capture: technology for CO2 purification. Int J Greenhouse Gas Control 3:528–534. https://doi.org/10.1016/j.ijggc.2009.03.001

    Article  Google Scholar 

  192. Lombardi L (2003) Life cycle assessment comparison of technical solutions for CO2 emissions reduction in power generation. Energy Convers Manag 44:93–108. https://doi.org/10.1016/S0196-8904(02)00049-3

    Article  Google Scholar 

  193. Beér JM (2007) High efficiency electric power generation: the environmental role. Prog Energy Combust Sci 33:107–134. https://doi.org/10.1016/j.pecs.2006.08.002

    Article  MathSciNet  Google Scholar 

  194. Oral J, Sikula J, Puchyr R, Hajny Z, Stehlik P, Bebar L (2005) Processing of waste from pulp and paper plant. J Clean Prod 13:509–515. https://doi.org/10.1016/j.jclepro.2003.09.005

    Article  Google Scholar 

  195. Gavrilescu D (2008) Energy from biomass in pulp and paper mills. Environ Eng Manag J 7:537–546

    Article  Google Scholar 

  196. Kauf F (1999) Determination of the optimum high pressure for transcritical CO2-refrigeration cycles. Int J Therm Sci 38:325–330. https://doi.org/10.1016/S1290-0729(99)80098-2

    Article  Google Scholar 

  197. Colasson S, Haberschill P (2010) Effect of refrigerant charge on global performances of a transcritical CO2 heat pump. Sustain. In: Refrigerant heat pump technology conference Stock, Sweden, pp 1–7. https://doi.org/10.3969/j.issn.0258-2724.2010.05.005

  198. Agrawal R Roberts M (2000) Dual mixed refrigerant cycle for gas liquefaction

    Google Scholar 

  199. Hénon FE, Camaiti M, Burke AL, Carbonell RG, DeSimone JM, Piacenti F (1999) Supercritical CO2 as a solvent for polymeric stone protective materials. J Supercrit Fluids 15:173–179. https://doi.org/10.1016/s0896-8446(99)00005-4

  200. Lee SY, Seo S, Broda JC, Pal S, Santoro RJ (2000) An experimental estimation of mean reaction rate and flame structure during combustion instability in a lean premixed gas turbine combustor. Proc Combust Inst 28:775–782. https://doi.org/10.1016/S0082-0784(00)80280-5

    Article  Google Scholar 

  201. Sun J, Liu X, Tong Y, Deng D (2014) A comparative study on welding temperature fields, residual stress distributions and deformations induced by laser beam welding and CO2 gas arc welding. Mater Des 63:519–530. https://doi.org/10.1016/j.matdes.2014.06.057

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Medhat A. Nemitallah .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nemitallah, M.A., Habib, M.A., Badr, H.M. (2019). Ion Transport Membranes (ITMs) for Oxygen Separation. In: Oxyfuel Combustion for Clean Energy Applications. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-10588-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10588-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10587-7

  • Online ISBN: 978-3-030-10588-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics