Skip to main content

Fracture Forming Limits for Near Net Shape Forming of Sheet Metals

  • Chapter
  • First Online:
Near Net Shape Manufacturing Processes

Abstract

The continuous innovations in sheet metallic materials lead to the need of the development of new and innovative forming methodologies. The emergence of the near net shape technologies, with the aim to create a product as close as possible to the final component, is an answer to these recent progresses. The knowledge of the formability limits of a material, that define the capacity of a material to deform permanently without failure (by necking or fracture ) allows a better design of a near net shape manufacturing process. This chapter describes the methodology to determine experimentally the fracture limits by tension (fracture forming limit line—FFL) and in-plane shear (shear fracture forming limit line—SFFL). For this, commonly utilized laboratory test specimens for mechanical, fracture and formability characterization are used to determine gauge length strains at the post-testing cracked regions of the specimen and involves the determination of the gauge length strains at the cracked regions of the specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keeler SP (1968) Circular Grid System—a valuable aid for evaluating sheet metal formability. SAE technical paper 680092

    Google Scholar 

  2. Goodwin G (1968) Application of strain analysis to sheet metal forming problems in the press shop. SAE technical paper 680093

    Google Scholar 

  3. ISO 12004-2:2008 (2008) Metallic materials—sheet and strip—determination of forming-limit curves—Part 2: Determination of forming-limit curves in the laboratory. International Organization for Standardization

    Google Scholar 

  4. ASTM E2218-02 (2008) Standard test method for determining forming limit curves. ASTM International, West Conshohocken, PA

    Google Scholar 

  5. Vacher P, Dumoulin S, Morestin F, Mguil-Touchal S (1999) Bidimensional strain measurement using digital images. Proc IMechE Part C J Mech Eng Sci 213(8):811–817

    Article  Google Scholar 

  6. Merklein M, Kuppert A, Geiger M (2010) Time dependent determination of forming limit diagrams. CIRP Ann Manuf Technol 59:295–298

    Article  Google Scholar 

  7. Tan Z, Melin L, Magnusson C (1992) Application of an image processing technique in strain measurement in sheet metal forming. J Mater Process Technol 33:299–310

    Article  Google Scholar 

  8. Martins PAF, Bay N, Tekkaya AE, Atkins AG (2014) Characterization of fracture loci in metal forming. Int J Mech Sci 83:112–123

    Article  Google Scholar 

  9. Bao Y, Wierzbicki T (2004) A comparative study on various ductile crack formation criteria. J Eng Mater Technol Trans ASME 126:314–324

    Article  Google Scholar 

  10. Wierzbicki T, Xue L (2005) On the effect of the third invariant of the stress deviator on ductile fracture. Technical Report, Impact and Crashworthiness Lab, MIT

    Google Scholar 

  11. McClintock FA (1966) Ductile fracture by hole growth in shear bands. Int J Fract Mech 2:614–627

    Article  Google Scholar 

  12. Atkins AG (1997) Fracture mechanics and metalforming: damage mechanics and the local approach of yesterday and today. In: Rossmanith HP (ed) Fracture research in retrospect. AA Balkema, Rotterdam, pp 327–350

    Google Scholar 

  13. Hill R (1948) A theory of yielding and plastic flow of anisotropic materials. Proc R Soc Lond (SER A) 193:281–297

    Article  Google Scholar 

  14. Atkins AG, Mai YW (1985) Elastic & plastic fracture. Ellis Horwood, Chichester

    Google Scholar 

  15. Embury JD, LeRoy (1977) Failure maps applied to metal deformation processes. Fracture 1977, ICF4, Waterloo, Canada, 1:15–42

    Google Scholar 

  16. Gurson A (1977) Continuum theory of ductile rupture by void nucleation and growth. I. Yield criteria and flow rules for porous ductile media. J Eng Mater Technol Trans ASME 99:2–15

    Article  Google Scholar 

  17. Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32:157–169

    Article  Google Scholar 

  18. Nahshon K, Hutchinson J (2008) Modification of the Gurson model for shear failure. Eur J Mech A/Solid 27:1–17

    Article  Google Scholar 

  19. McClintock FA (1968) A criterion for ductile fracture by the growth of holes. J Appl Mech Trans ASME 35:363–371

    Article  Google Scholar 

  20. ASTM Standard E8/E8M—13 (2013) Standard test methods for tension testing of metallic materials. ASTM International, West Conshohocken, PA

    Google Scholar 

  21. Rossard C (1976) Mise en forme des métaux et alliages. CNRS, Paris, France

    Google Scholar 

  22. ISO Standard 120004-2 (2008) Metallic materials—sheet and strip—determination of forming-limit curves—Part 2: Determination of forming—limit curves in the laboratory, Geneva, Switzerland

    Google Scholar 

  23. Cristino VA, Silva MB, Wong PK, Martins PAF (2017) Determining the fracture forming limits in sheet metal forming: a technical note. J Strain Anal Eng Des 52(8):467–471

    Article  Google Scholar 

  24. Cotterell B, Reddel JK (1977) The essential work of plane stress ductile fracture. Int J Fract 13(3):267–277

    Google Scholar 

  25. ASTM Standard B831-05 (2005) Standard test method for shear testing of thin aluminum alloy products. ASTM International, West Conshohocken, PA

    Google Scholar 

  26. Isik K, Silva MB, Tekkaya AE, Martins PAF (2014) Formability limits by fracture in sheet metal forming. J Mat Process Technol 214:1557–1565

    Article  Google Scholar 

  27. Cotterell B, Lee E, Mai YW (1982) Mixed mode plane stress ductile fracture. Int J Fract 20:243–250

    Article  Google Scholar 

  28. Atkins AG (1996) Fracture in forming. J Mater Process Technol 56:609–618

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the provided support by Fundação para a Ciência e a Tecnologia of Portugal and IDMEC under LAETA-UID/EMS/50022/2013, PDTC/EMS-TEC/0626/2014 and the support by the project MODSEAT.: Modular Light-Rail Seat, P2020 LISBOA-01-0247-FEDER-017247.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Magrinho, J.P., Silva, M.B., Martins, P.A.F. (2019). Fracture Forming Limits for Near Net Shape Forming of Sheet Metals. In: Gupta, K. (eds) Near Net Shape Manufacturing Processes. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-030-10579-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10579-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10578-5

  • Online ISBN: 978-3-030-10579-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics