Skip to main content

Towards the Manufacturing of Near Net Shape Medical Prostheses in Polymeric Sheet by Incremental Sheet Forming

  • Chapter
  • First Online:
Near Net Shape Manufacturing Processes

Abstract

The main objective of this chapter is to increase the existing knowledge in Incremental Sheet Forming (ISF), as a near net shape medical manufacturing process specifically for obtaining polymer of prostheses-parts, evaluating and defining the process parameters involved to improve the technology based on the analysis of quantitative outputs. This should help to provide process guidelines useful for manufacturing complex and customized parts, to be applied for example in the biomedical field. The chapter is divided into two main blocks: (i) the study of the influence of the process parameters on basic polymeric geometries manufactured by SPIF, and (ii) an analysis of some case studies of cranial implants manufactured by ISF using non-biocompatible and biocompatible polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CISF:

Total cost of the ISF process

Cf:

Forming cost

Cs:

Setup cost

Ci:

Cost of workpiece and equipment handling

Ct:

Tooling cost

CMD:

Direct material cost

CMID:

Indirect material cost

CED:

Direct energy cost

CEA:

Ancillary energy cost

Cenv:

Environmental burden cost

tf:

Forming time

Lf:

Labour rate

Bf:

Burden rate including depreciation, maintenance, taxes, interest rate

Kf:

Forming cost rate including Lf and Bf

Np:

Number of parts

ts:

Setup time

ti:

Idling time

tc:

Time required to change tool

Kt:

Tool cost

T:

Tool life

KM:

Cost of workpiece material

MD:

Direct material used

KLOf:

Cost of forming lubricant

LOf:

Quantity of forming lubricant used

KLO:

Cost of machine lubricant

LO:

Quantity of machine lubricant used

KE:

Cost of electricity

ED:

Direct energy consumed

EA:

Ancillary energy consumed

\( \text{E}_{\text{CO}_{2}} \) :

CO2 emitted due to energy

\( \text{LO}_{\text{fCO}_{2}} \) :

CO2 emitted due to forming lubricant

\( \text{LO}_{\text{CO}_{2}} \) :

CO2 emitted due to machine lubricant

\( \text{TL}_{\text{CO}_{2}} \) :

CO2 emitted due to the tool

\( \text{ML}_{\text{CO}_{2}} \) :

CO2 emitted due to direct material

\( \text{K}_{\text{CO}_{2}} \) :

Carbon cost

References

  1. Jeswiet J, Adams D, Doolan M, McAnulty T, Gupta P (2015) Single point and asymmetric incremental forming. Adv Manuf 3:253ā€“262. https://doi.org/10.1007/s40436-015-0126-1

    ArticleĀ  Google ScholarĀ 

  2. Fratini L, Ambrogio G, Di Lorenzo R, Filice L, Micari F (2004) Influence of mechanical properties of the sheet material on formability in single point incremental forming. CIRP Ann Manuf Technol 53:207ā€“210. https://doi.org/10.1016/S0007-8506(07)60680-5

    ArticleĀ  Google ScholarĀ 

  3. Ambrogio G, Costantino I, Denapoli L, Filice L, Fratini L, Muzzupappa M (2004) Influence of some relevant process parameters on the dimensional accuracy in incremental forming: a numerical and experimental investigation. J Mater Process Technol 153ā€“154:501ā€“507. https://doi.org/10.1016/j.jmatprotec.2004.04.139

    ArticleĀ  Google ScholarĀ 

  4. Araghi BT, Manco GL, Bambach M, Hirt G (2009) Investigation into a new hybrid forming process: incremental sheet forming combined with stretch forming. CIRP Ann Manuf Technol 58:225ā€“228. https://doi.org/10.1016/j.cirp.2009.03.101

    ArticleĀ  Google ScholarĀ 

  5. Bambach M, Taleb Araghi B, Hirt G (2009) Strategies to improve the geometric accuracy in asymmetric single point incremental forming. Prod Eng 3:145ā€“156. https://doi.org/10.1007/s11740-009-0150-8

    ArticleĀ  Google ScholarĀ 

  6. Ceretti E (2004) Experimental and simulative results in sheet incremental forming on CNC machines. J Mater Process Technol 152:176ā€“184. https://doi.org/10.1016/j.jmatprotec.2004.03.024

    ArticleĀ  Google ScholarĀ 

  7. Aerens R, Eyckens P, Bael A, Duflou JR (2010) Force prediction for single point incremental forming deduced from experimental and FEM observations. Int J Adv Manuf Technol 46:969ā€“982. https://doi.org/10.1007/s00170-009-2160-2

    ArticleĀ  Google ScholarĀ 

  8. Van Sy L, Nam NT (2015) Effect of strain rate and temperature on formability of warm-incremental forming process with magnesium alloy sheet AZ31. J Manuf Technol Res 6:17ā€“31

    Google ScholarĀ 

  9. Ambrogio G, Gagliardi F, Bruschi S, Filice L (2013) On the high-speed single point incremental forming of titanium alloys. CIRP Ann Manuf Technol 62:243ā€“246. https://doi.org/10.1016/j.cirp.2013.03.053

    ArticleĀ  Google ScholarĀ 

  10. Franzen V, Kwiatkowski L, Martins P, Tekkaya A (2009) Single point incremental forming of PVC. J Mater Process Technol 209:462ā€“469. https://doi.org/10.1016/j.jmatprotec.2008.02.013

    ArticleĀ  Google ScholarĀ 

  11. Martins PAF, Kwiatkowski L, Franzen V, Tekkaya AE, Kleiner M (2009) Single point incremental forming of polymers. CIRP Ann Manuf Technol 58:229ā€“232. https://doi.org/10.1016/j.cirp.2009.03.095

    ArticleĀ  Google ScholarĀ 

  12. Davarpanah MA, Mirkouei A, Yu X, Malhotra R, Pilla S (2015) Effects of incremental depth and tool rotation on failure modes and microstructural properties in single point incremental forming of polymers. J Mater Process Technol 222:287ā€“300. https://doi.org/10.1016/j.jmatprotec.2015.03.014

    ArticleĀ  Google ScholarĀ 

  13. Davarpanah MA, Bansal S, Malhotra R (2017) Influence of single point incremental forming on mechanical properties and chain orientation in thermoplastic polymers. J Manuf Sci Eng 139:21012ā€“21019. https://doi.org/10.1115/1.4034036

    ArticleĀ  Google ScholarĀ 

  14. Lozano-SĆ”nchez LM, Sustaita AO, Soto M, Biradar S, Ge L, Segura-CĆ”rdenas E et al (2017) Mechanical and structural studies on single point incremental forming of polypropylene-MWCNTs composite sheets. J Mater Process Technol 242:218ā€“227. https://doi.org/10.1016/j.jmatprotec.2016.11.032

    ArticleĀ  Google ScholarĀ 

  15. Fiorentino A, Marenda GP, Marzi R, Ceretti E, Kemmoku DT, Silva JVL (2012) Rapid prototyping techniques for individualized medical prosthesis manufacturing. Innov Dev Virtual Phys Prototyp 1:589ā€“594. https://doi.org/10.1201/b11341-94

    ChapterĀ  Google ScholarĀ 

  16. Ingarao G, Vanhove H, Kellens K, Duflou JR (2014) A comprehensive analysis of electric energy consumption of single point incremental forming processes. J Clean Prod 67:173ā€“186. https://doi.org/10.1016/j.jclepro.2013.12.022

    ArticleĀ  Google ScholarĀ 

  17. Bagudanch I, Garcia-Romeu ML, Centeno G, ElĆ­as-ZĆŗƱiga A, Ciurana J (2015) Forming force and temperature effects on single point incremental forming of polyvinylchloride. J Mater Process Technol 219:221ā€“229. https://doi.org/10.1016/j.jmatprotec.2014.12.004

    ArticleĀ  Google ScholarĀ 

  18. Bagudanch I, Garcia-Romeu ML, Sabater M (2016) Incremental forming of polymers: process parameters selection from the perspective of electric energy consumption and cost. J Clean Prod 112:1013ā€“1024. https://doi.org/10.1016/j.jclepro.2015.08.087

    ArticleĀ  Google ScholarĀ 

  19. Branker K (2011) A study of energy, carbon dioxide emissions and economics in machining: milling and single point incremental forming. p 292

    Google ScholarĀ 

  20. Bagudanch I, Vives-Mestres M, Sabater M, Garcia-Romeu ML (2017) Polymer incremental sheet forming process: temperature analysis using response surface methodology. Mater Manuf Process 32. https://doi.org/10.1080/10426914.2016.1176191

    ArticleĀ  Google ScholarĀ 

  21. Hussain G, Mahna A, Iqbal A (2016) Response surface analysis of cold formability of polymers in incremental sheet forming: effect of parameters and associated thermal softening. Int J Precis Eng Manuf 17:613ā€“621. https://doi.org/10.1007/s12541-016-0074-0

    ArticleĀ  Google ScholarĀ 

  22. Marques TA, Silva MB, Martins PAF (2012) On the potential of single point incremental forming of sheet polymer parts. Int J Adv Manuf Technol 60:75ā€“86

    ArticleĀ  Google ScholarĀ 

  23. Silva MB, Martinho TM, Martins PAF (2013) Incremental forming of hole-flanges in polymer sheets. Mater Manuf Process 28:330ā€“335. https://doi.org/10.1080/10426914.2012.682488

    ArticleĀ  Google ScholarĀ 

  24. Bagudanch I, Centeno G, Vallellano C, Garcia-Romeu ML (2017) Revisiting formability and failure of polymeric sheets deformed by single point incremental forming. Polym Degrad Stab 144:366ā€“377. https://doi.org/10.1016/j.polymdegradstab.2017.08.021

    ArticleĀ  Google ScholarĀ 

  25. Centeno G, Martinez-Donaire AJ, Morales-Palma D, Vallellano C, Silva MB, Martins PAF (2015) Novel experimental techniques for the determination of the forming limits at necking and fracture. In: Materials forming and machining: research and development, pp 1ā€“24. https://doi.org/10.1016/b978-0-85709-483-4.00001-6

    Google ScholarĀ 

  26. Atkins AG (1996) Fracture in forming. J Mater Process Technol 56:609ā€“618. https://doi.org/10.1016/0924-0136(95)01875-1

    ArticleĀ  Google ScholarĀ 

  27. Ambrogio G, Denapoli L, Filice L, Gagliardi F, Muzzupappa M (2005) Application of incremental forming process for high customised medical product manufacturing. J Mater Process Technol 162ā€“163:156ā€“162. https://doi.org/10.1016/j.jmatprotec.2005.02.148

    ArticleĀ  Google ScholarĀ 

  28. Duflou JR, Lauwers B, Verbert J, Gelaude F, Tunckol Y (2005) Medical application of single point incremental forming: cranial plate manufacturing. In: Virtual modelling and rapid manufacturingā€”advanced research in virtual and rapid prototyping, pp 161ā€“166

    Google ScholarĀ 

  29. Han F, Mo JH, Wang P, Deng YZ (2010) A digital manufacture technology for skull prosthesis using incremental sheet forming method. Adv Mater Res 102ā€“104:348ā€“352. https://doi.org/10.4028/www.scientific.net/AMR.102-104.348

    ArticleĀ  Google ScholarĀ 

  30. Gƶttmann A, Korinth M, SchƤfer V, Araghi BT, Bambach M, Hirt G (2013) Manufacturing of individualized cranial implants using two point incremental sheet metal forming. Futur Trends Prod Eng 5:287ā€“295. https://doi.org/10.1007/978-3-642-24491-9

    ArticleĀ  Google ScholarĀ 

  31. Li Y, Liu Z, Lu H, Daniel WJT, Liu S, Meehan PA (2014) Efficient force prediction for incremental sheet forming and experimental validation. Int J Adv Manuf Technol 73:571ā€“587. https://doi.org/10.1007/s00170-014-5665-2

    ArticleĀ  Google ScholarĀ 

  32. Castelan J, Schaeffer L, Daleffe A, Fritzen D, Salvaro V, Da Silva FP (2014) Manufacture of custom-made cranial implants from DICOM images using 3D printing, CAD/CAM technology and incremental sheet forming. Rev Bras Eng Biomed 30:265ā€“273. https://doi.org/10.1590/rbeb.2014.024

    ArticleĀ  Google ScholarĀ 

  33. Ambrogio G, Conte R, de Napoli L, Fragomeni G, Gagliardi F (2015) Forming approaches comparison for high customised skull manufacturing. Key Eng Mater 651ā€“653:925ā€“931. https://doi.org/10.4028/www.scientific.net/KEM.651-653.925

    ArticleĀ  Google ScholarĀ 

  34. Tanaka S, Nakamura T, Hayakawa K, Nakamura H, Motomura K (2007) Residual stress in sheet metal parts made by incremental forming process. AIP Conf Proc 908:775ā€“780. https://doi.org/10.1063/1.2740904

    ArticleĀ  Google ScholarĀ 

  35. Milutinovic M, Lendel R, Potran M, Vilotic D, Skakun P, Plancak M (2014) Application of single point incremental forming for manufacturing of denture base. J Technol Plast 39:15ā€“24

    Google ScholarĀ 

  36. Oleksik V, Pascu A, Mara D, Bologa O, Racz G, Breaz R (2010) Influence of geometric parameters on strain and thickness reduction in incremental forming process. Met Form 8ā€“11

    Google ScholarĀ 

  37. Duflou JR, Behera AK, Vanhove H, Bertol LS (2013) Manufacture of accurate titanium cranio-facial implants with high forming angle using single point incremental forming. Key Eng Mater 549:223ā€“230. https://doi.org/10.4028/www.scientific.net/KEM.549.223

    ArticleĀ  Google ScholarĀ 

  38. Araujo R, Teixeira P, Montanari L, Reis A, Silva MB, Martins PA (2014) Single point incremental forming of a facial implant. Prosthet Orthot Int 38:369ā€“378. https://doi.org/10.1177/0309364613502071

    ArticleĀ  Google ScholarĀ 

  39. Garcia-Romeu ML, PĆ©rez-Santiago R, Bagudanch I, PuigpinĆ³s L (2012) Fabrication of a biopsy micro-forceps prototype with incremental sheet forming. In: Proceedings of the 1st international conference on design and processes for medical devices (PROMED), pp 103ā€“106

    Google ScholarĀ 

  40. Bagudanch I, Garcia-Romeu ML, Ferrer I (2014) Manufacturing of thermoplastic cranial prosthesis by incremental sheet forming. In: Proceedings of the 2nd international conference on design and processes for medical devices (PROMED), Monterrey, pp 95ā€“98

    Google ScholarĀ 

  41. Bagudanch I, Lozano-SĆ”nchez LM, PuigpinĆ³s L, Sabater M, Elizalde LE, ElĆ­as-ZĆŗƱiga A et al (2015) Manufacturing of polymeric biocompatible cranial geometry by single point incremental forming. Proc Eng 132:267ā€“273. https://doi.org/10.1016/j.proeng.2015.12.494

    ArticleĀ  Google ScholarĀ 

  42. Centeno G, Morales-Palma D, Gonzalez-Perez-Somarriba B, Bagudanch I, Egea-Guerrero JJ, Gonzalez-Perez LM et al (2017) A functional methodology on the manufacturing of customized polymeric cranial prostheses from CAT using SPIF. Rapid Prototyp J 23. https://doi.org/10.1108/rpj-02-2016-0031

    ArticleĀ  Google ScholarĀ 

  43. Bagudanch I, Garcia-Romeu ML, Ferrer I, Ciurana J (2018) Customized cranial implant manufactured by incremental sheet forming using a biocompatible polymer. Rapid Prototyp J 24. https://doi.org/10.1108/rpj-06-2016-0089

    ArticleĀ  Google ScholarĀ 

  44. Allwood JM, King GPF, Duflou J (2005) A structured search for applications of the incremental sheet-forming process by product segmentation. Proc Inst Mech Eng, Part B: J Eng Manuf 219:239ā€“244. https://doi.org/10.1243/095440505X8145

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Luisa Garcia-Romeu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bagudanch, I., Centeno, G., Vallellano, C., Garcia-Romeu, M.L. (2019). Towards the Manufacturing of Near Net Shape Medical Prostheses in Polymeric Sheet by Incremental Sheet Forming. In: Gupta, K. (eds) Near Net Shape Manufacturing Processes. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-030-10579-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10579-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10578-5

  • Online ISBN: 978-3-030-10579-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics