Skip to main content

Capacitated Discrete Unit Disk Cover

  • Conference paper
  • First Online:
WALCOM: Algorithms and Computation (WALCOM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11355))

Included in the following conference series:

  • 696 Accesses

Abstract

Consider a capacitated version of the discrete unit disk cover problem as follows: consider a set \(P= \{p_1,p_2, \cdots ,p_n\}\) of n customers and a set \(Q=\{q_1,q_2, \cdots ,q_m\}\) of m service centers. A service center can provide service to at most \(\alpha ( \in \mathbb {N})\) number of customers. Each \(q_i \in Q\) \((i=1,2, \cdots ,m)\) has a preassigned set of customers to which it can provide service. The objective of the capacitated covering problem is to provide service to each customer in P by at least one service center in Q. In this paper, we consider the geometric version of the capacitated covering problem, where the set of customers and set of service centers are two point sets in the Euclidean plane. A service center can provide service to a customer if their Euclidean distance is less than or equal to 1. We call this problem as \((\alpha , P, Q)\)-covering problem. For the \((\alpha , P, Q)\)-covering problem, we propose an \(O(\alpha mn(m+n))\) time algorithm to check feasible solution for a given instance. We also prove that the \((\alpha , P, Q)\)-covering problem is NP-complete for \(\alpha \ge 3\) and it admits a PTAS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambühl, C., Erlebach, T., Mihalák, M., Nunkesser, M.: Constant-factor approximation for minimum-weight (connected) dominating sets in unit disk graphs. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX/RANDOM -2006. LNCS, vol. 4110, pp. 3–14. Springer, Heidelberg (2006). https://doi.org/10.1007/11830924_3

    Chapter  MATH  Google Scholar 

  2. Basappa, M., Acharyya, R., Das, G.K.: Unit disk cover problem in 2D. J. Discrete Algorithms 33, 193–201 (2015)

    Article  MathSciNet  Google Scholar 

  3. Biedl, T., Kant, G.: A better heuristic for orthogonal graph drawings. Comput. Geom. 9(3), 159–180 (1998)

    Article  MathSciNet  Google Scholar 

  4. Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite VC-dimension. Discrete Comput. Geom. 14(4), 463–479 (1995)

    Article  MathSciNet  Google Scholar 

  5. Călinescu, G., Mandoiu, I.I., Wan, P.J., Zelikovsky, A.Z.: Selecting forwarding neighbors in wireless ad hoc networks. Mobile Netw. Appl. 9(2), 101–111 (2004)

    Article  Google Scholar 

  6. Carmi, P., Katz, M.J., Lev-Tov, N.: Covering points by unit disks of fixed location. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 644–655. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77120-3_56

    Chapter  Google Scholar 

  7. Claude, F., et al.: An improved line-separable algorithm for discrete unit disk cover. Discrete Math. Algorithms Appl. 2(01), 77–87 (2010)

    Article  MathSciNet  Google Scholar 

  8. Das, G.K., Fraser, R., López-Ortiz, A., Nickerson, B.G.: On the discrete unit disk cover problem. Int. J. Comput. Geom. Appl. 22(05), 407–419 (2012)

    Article  MathSciNet  Google Scholar 

  9. Federickson, G.N.: Fast algorithms for shortest paths in planar graphs, with applications. SIAM J. Comput. 16(6), 1004–1022 (1987)

    Article  MathSciNet  Google Scholar 

  10. Feige, U.: A threshold of ln n for approximating set cover. J. ACM (JACM) 45(4), 634–652 (1998)

    Article  Google Scholar 

  11. Fraser, R., López-Ortiz, A.: The within-strip discrete unit disk cover problem. Theor. Comput. Sci. 674, 99–115 (2017)

    Article  MathSciNet  Google Scholar 

  12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  13. Haussler, D., Welzl, E.: \(\epsilon \)-nets and simplex range queries. Discrete & Computational Geometry 2(2), 127–151 (1987)

    Article  MathSciNet  Google Scholar 

  14. Kleinberg, J., Tardos, E.: Algorithm Design. Addison-Wesley Longman Publishing Co. Inc, Boston (2005)

    Google Scholar 

  15. Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Discrete Comput. Geom. 44(4), 883–895 (2010)

    Article  MathSciNet  Google Scholar 

  16. Mustafa, N.H., Ray, S.: PTAS for geometric hitting set problems via local search. In: Proceedings of the Twenty-fifth Annual Symposium on Computational Geometry, pp. 17–22. ACM (2009)

    Google Scholar 

  17. Valiant, L.G.: Universality considerations in VLSI circuits. IEEE Trans. Comput. 100(2), 135–140 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam K. Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mishra, P.K., Jena, S.K., Das, G.K., Rao, S.V. (2019). Capacitated Discrete Unit Disk Cover. In: Das, G., Mandal, P., Mukhopadhyaya, K., Nakano, Si. (eds) WALCOM: Algorithms and Computation. WALCOM 2019. Lecture Notes in Computer Science(), vol 11355. Springer, Cham. https://doi.org/10.1007/978-3-030-10564-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10564-8_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10563-1

  • Online ISBN: 978-3-030-10564-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics