Skip to main content

Matching Sets of Line Segments

  • Conference paper
  • First Online:
WALCOM: Algorithms and Computation (WALCOM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11355))

Included in the following conference series:

  • 769 Accesses

Abstract

We give approximation algorithms for matching two sets of line segments in constant dimension. We consider several versions of the problem: Hausdorff distance, bottleneck distance and largest common point set. We study these similarity measures under several sets of transformations: translations, rotations about a fixed point and rigid motions. As opposed to previous theoretical work on this problem, we match segments individually, in other words we regard our two input sets as sets of segments rather than unions of segments.

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B04036529).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn, H., Cheong, O., Park, C., Shin, C., Vigneron, A.: Maximizing the overlap of two planar convex sets under rigid motions. Comput. Geom. 37(1), 3–15 (2007)

    Article  MathSciNet  Google Scholar 

  2. Alt, H., Behrends, B., Blömer, J.: Approximate matching of polygonal shapes. Ann. Math. Artif. Intell. 13(3), 251–265 (1995)

    Article  MathSciNet  Google Scholar 

  3. Alt, H., Guibas, L.J.: Discrete geometric shapes: matching, interpolation, and approximation. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 121–153. B.V. North-Holland, Amsterdam (2000). Chapter 3

    Chapter  Google Scholar 

  4. Alt, H., Mehlhorn, K., Wagener, H., Welzl, E.: Congruence, similarity, and symmetries of geometric objects. Discrete Comput. Geom. 3(3), 237–256 (1988)

    Article  MathSciNet  Google Scholar 

  5. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM 45(6), 891–923 (1998)

    Article  MathSciNet  Google Scholar 

  6. Cabello, S., de Berg, M., Giannopoulos, P., Knauer, C., van Oostrum, R., Veltkamp, R.C.: Maximizing the area of overlap of two unions of disks under rigid motion. Int. J. Comput. Geom. Appl. 19(6), 533–556 (2009)

    Article  MathSciNet  Google Scholar 

  7. Chen, H.H., Huang, T.S.: Matching 3-D line segments with applications to multiple-object motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 12(10), 1002–1008 (1990)

    Article  Google Scholar 

  8. Chew, L., Goodrich, M.T., Huttenlocher, D.P., Kedem, K., Kleinberg, J.M., Kravets, D.: Geometric pattern matching under Euclidean motion. Comput. Geom. 7(1), 113–124 (1997)

    Article  MathSciNet  Google Scholar 

  9. Efrat, A., Itai, A., Katz, M.J.: Geometry helps in bottleneck matching and related problems. Algorithmica 31(1), 1–28 (2001)

    Article  MathSciNet  Google Scholar 

  10. Gao, M., Skolnick, J.: iAlign: a method for the structural comparison of protein-protein interfaces. Bioinformatics 26(18), 2259–2265 (2010)

    Article  Google Scholar 

  11. Har-Peled, S., Roy, S.: Approximating the maximum overlap of polygons under translation. Algorithmica 78(1), 147–165 (2017)

    Article  MathSciNet  Google Scholar 

  12. Heffernan, P.J., Schirra, S.: Approximate decision algorithms for point set congruence. Comput. Geom. 4(3), 137–156 (1994)

    Article  MathSciNet  Google Scholar 

  13. Medioni, G.G., Nevatia, R.: Matching images using linear features. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 675–685 (1984)

    Article  Google Scholar 

  14. Vigneron, A.: Geometric optimization and sums of algebraic functions. ACM Trans. Algorithms 10(1), 4:1–4:20 (2014)

    Article  MathSciNet  Google Scholar 

  15. Yon, J., Cheng, S., Cheong, O., Vigneron, A.: Finding largest common point sets. Int. J. Comput. Geom. Appl. 27(3), 177–186 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Vigneron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, H., Vigneron, A. (2019). Matching Sets of Line Segments. In: Das, G., Mandal, P., Mukhopadhyaya, K., Nakano, Si. (eds) WALCOM: Algorithms and Computation. WALCOM 2019. Lecture Notes in Computer Science(), vol 11355. Springer, Cham. https://doi.org/10.1007/978-3-030-10564-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10564-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10563-1

  • Online ISBN: 978-3-030-10564-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics