Skip to main content

Computing the Metric Dimension by Decomposing Graphs into Extended Biconnected Components

(Extended Abstract)

  • Conference paper
  • First Online:
WALCOM: Algorithms and Computation (WALCOM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11355))

Included in the following conference series:

Abstract

A vertex set \(U \subseteq V\) of an undirected graph \(G=(V,E)\) is a resolving set for G, if for every two distinct vertices \(u,v \in V\) there is a vertex \(w \in U\) such that the distance between u and w and the distance between v and w are different. The Metric Dimension of G is the size of a smallest resolving set for G. Deciding whether a given graph G has Metric Dimension at most k for some integer k is well-known to be NP-complete. A lot of research has been done to understand the complexity of this problem on restricted graph classes. In this paper, we decompose a graph into its so called extended biconnected components and present an efficient algorithm for computing the metric dimension for a class of graphs having a minimum resolving set with a bounded number of vertices in every extended biconnected component. Furthermore, we show that the decision problem Metric Dimension remains NP-complete when the above limitation is extended to usual biconnected components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belmonte, R., Fomin, F.V., Golovach, P.A., Ramanujan, M.: Metric dimension of bounded tree-length graphs. SIAM J. Discret. Math. 31(2), 1217–1243 (2017)

    Article  MathSciNet  Google Scholar 

  2. Chartrand, G., Eroh, L., Johnson, M., Oellermann, O.: Resolvability in graphs and the metric dimension of a graph. Discret. Appl. Math. 105(1–3), 99–113 (2000)

    Article  MathSciNet  Google Scholar 

  3. Díaz, J., Pottonen, O., Serna, M., van Leeuwen, E.J.: On the complexity of metric dimension. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 419–430. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33090-2_37

    Chapter  Google Scholar 

  4. Epstein, L., Levin, A., Woeginger, G.J.: The (weighted) metric dimension of graphs: hard and easy cases. Algorithmica 72(4), 1130–1171 (2015)

    Article  MathSciNet  Google Scholar 

  5. Estrada-Moreno, A., Rodríguez-Velázquez, J.A., Yero, I.G.: The k-metric dimension of a graph. arXiv preprint arXiv:1312.6840 (2013)

  6. Fernau, H., Heggernes, P., van’t Hof, P., Meister, D., Saei, R.: Computing the metric dimension for chain graphs. Inf. Process. Lett. 115(9), 671–676 (2015)

    Article  MathSciNet  Google Scholar 

  7. Foucaud, F., Mertzios, G.B., Naserasr, R., Parreau, A., Valicov, P.: Algorithms and complexity for metric dimension and location-domination on interval and permutation graphs. In: Mayr, E.W. (ed.) WG 2015. LNCS, vol. 9224, pp. 456–471. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53174-7_32

    Chapter  Google Scholar 

  8. Foucaud, F., Mertzios, G.B., Naserasr, R., Parreau, A., Valicov, P.: Identification, location-domination and metric dimension on interval and permutation graphs. I. Bounds. Theor. Comput. Sci. 668, 43–58 (2017)

    Article  MathSciNet  Google Scholar 

  9. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  10. Harary, F., Melter, R.: On the metric dimension of a graph. Ars Combinatoria 2, 191–195 (1976)

    MathSciNet  MATH  Google Scholar 

  11. Hartung, S., Nichterlein, A.: On the parameterized and approximation hardness of metric dimension. In: 2013 IEEE Conference on Computational Complexity (CCC), pp. 266–276. IEEE (2013)

    Google Scholar 

  12. Hauptmann, M., Schmied, R., Viehmann, C.: Approximation complexity of metric dimension problem. J. Discret. Algorithms 14, 214–222 (2012)

    Article  MathSciNet  Google Scholar 

  13. Hernando, C., Mora, M., Slater, P.J., Wood, D.R.: Fault-tolerant metric dimension of graphs. Convexity Discret. Struct. 5, 81–85 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Hernando, M., Mora, M., Pelayo, I., Seara, C., Cáceres, J., Puertas, M.: On the metric dimension of some families of graphs. Electron. Notes Discret. Math. 22, 129–133 (2005)

    Article  Google Scholar 

  15. Hoffmann, S., Wanke, E.: Metric Dimension for Gabriel unit disk graphs is NP-complete. In: Bar-Noy, A., Halldórsson, M.M. (eds.) ALGOSENSORS 2012. LNCS, vol. 7718, pp. 90–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36092-3_10

    Chapter  Google Scholar 

  16. Hoffmann, S., Elterman, A., Wanke, E.: A linear time algorithm for metric dimension of cactus block graphs. Theor. Comput. Sci. 630, 43–62 (2016)

    Article  MathSciNet  Google Scholar 

  17. Iswadi, H., Baskoro, E., Salman, A., Simanjuntak, R.: The metric dimension of amalgamation of cycles. Far East J. Math. Sci. (FJMS) 41(1), 19–31 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discret. Appl. Math. 70, 217–229 (1996)

    Article  MathSciNet  Google Scholar 

  19. Oellermann, O.R., Peters-Fransen, J.: The strong metric dimension of graphs and digraphs. Discret. Appl. Math. 155(3), 356–364 (2007)

    Article  MathSciNet  Google Scholar 

  20. Saputro, S., Baskoro, E., Salman, A., Suprijanto, D., Baca, A.: The metric dimension of regular bipartite graphs. arXiv/1101.3624 (2011). http://arxiv.org/abs/1101.3624

  21. Sebö, A., Tannier, E.: On metric generators of graphs. Math. Oper. Res. 29(2), 383–393 (2004)

    Article  MathSciNet  Google Scholar 

  22. Slater, P.: Leaves of trees. Congr. Numer. 14, 549–559 (1975)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duygu Vietz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vietz, D., Hoffmann, S., Wanke, E. (2019). Computing the Metric Dimension by Decomposing Graphs into Extended Biconnected Components. In: Das, G., Mandal, P., Mukhopadhyaya, K., Nakano, Si. (eds) WALCOM: Algorithms and Computation. WALCOM 2019. Lecture Notes in Computer Science(), vol 11355. Springer, Cham. https://doi.org/10.1007/978-3-030-10564-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10564-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10563-1

  • Online ISBN: 978-3-030-10564-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics