Skip to main content

Drawing Clustered Graphs on Disk Arrangements

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11355))

Abstract

Let \(G=(V, E)\) be a planar graph and let \(\mathcal V\) be a partition of V. We refer to the graphs induced by the vertex sets in as clusters. Let \(\mathcal {D}_{\mathcal C}\) be an arrangement of disks with a bijection between the disks and the clusters. Akitaya et al. [2] give an algorithm to test whether can be embedded onto \(\mathcal {D}_{\mathcal C}\) with the additional constraint that edges are routed through a set of pipes between the disks. Based on such an embedding, we prove that every clustered graph and every disk arrangement without pipe-disk intersections has a planar straight-line drawing where every vertex is embedded in the disk corresponding to its cluster. This result can be seen as an extension of the result by Alam et al. [3] who solely consider biconnected clusters. Moreover, we prove that it is \(\mathcal {NP} \)-hard to decide whether a clustered graph has such a straight-line drawing, if we permit pipe-disk intersections.

Work was partially supported by grant WA 654/21-1 of the German Research Foundation (DFG).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abrahamsen, M., Adamaszek, A., Miltzow, T.: The art gallery problem is \(\exists \mathbb{R}\)-complete. In: STOC 2018, pp. 65–73. ACM (2018)

    Google Scholar 

  2. Akitaya, H.A., Fulek, R., Tóth, C.D.: Recognizing weak embeddings of graphs. In: Czumaj, A. (ed.) SODA 2018, pp. 274–292. SIAM (2018)

    Google Scholar 

  3. Alam, M., Kaufmann, M., Kobourov, S.G., Mchedlidze, T.: Fitting planar graphs on planar maps. J. Graph Alg. Appl. 19(1), 413–440 (2015)

    Article  MathSciNet  Google Scholar 

  4. Angelini, P., et al.: Anchored drawings of planar graphs. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 404–415. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45803-7_34

    Chapter  Google Scholar 

  5. Angelini, P., Frati, F., Kaufmann, M.: Straight-line rectangular drawings of clustered graphs. Disc. Comput. Geom. 45(1), 88–140 (2011)

    Article  MathSciNet  Google Scholar 

  6. Banyassady, B., Hoffmann, M., Klemz, B., Löffler, M., Miltzow, T.: Obedient plane drawings for disk intersection graphs. In: Ellen, F., Kolokolova, A., Sack, J.R. (eds.) Algorithms and Data Structures. LNCS, vol. 10389, pp. 73–84. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62127-2_7

    Chapter  Google Scholar 

  7. de Berg, M., Khosravi, A.: Optimal binary space partitions for segments in the plane. Int. J. Comput. Geom. Appl. 22(3), 187–206 (2012)

    Article  MathSciNet  Google Scholar 

  8. Bläsius, T., Rutter, I.: A new perspective on clustered planarity as a combinatorial embedding problem. Theor. Comput. Sci. 609(2), 306–315 (2016)

    Article  MathSciNet  Google Scholar 

  9. Cortese, P.F., Di Battista, G., Patrignani, M., Pizzonia, M.: On embedding a cycle in a plane graph. Disc. Math. 309(7), 1856–1869 (2009)

    Article  MathSciNet  Google Scholar 

  10. Eades, P., Feng, Q., Lin, X., Nagamochi, H.: Straight-line drawing algorithms for hierarchical graphs and clustered graphs. Algorithmica 44(1), 1–32 (2006)

    Article  MathSciNet  Google Scholar 

  11. Feng, Q.-W., Cohen, R.F., Eades, P.: Planarity for clustered graphs. In: Spirakis, P. (ed.) ESA 1995. LNCS, vol. 979, pp. 213–226. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60313-1_145

    Chapter  Google Scholar 

  12. Godau, M.: On the difficulty of embedding planar graphs with inaccuracies. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 254–261. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-58950-3_377

    Chapter  Google Scholar 

  13. Mchedlidze, T., Radermacher, M., Rutter, I., Zimbel, N.: Drawing Clustered Graphs on Disk Arrangements (2018). https://arxiv.org/abs/1811.00785

  14. Ribó Mor, A.: Realization and Counting Problems for Planar Structures. Ph.D. thesis, FU Berlin (2006). https://refubium.fu-berlin.de/handle/fub188/10243

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Radermacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mchedlidze, T., Radermacher, M., Rutter, I., Zimbel, N. (2019). Drawing Clustered Graphs on Disk Arrangements. In: Das, G., Mandal, P., Mukhopadhyaya, K., Nakano, Si. (eds) WALCOM: Algorithms and Computation. WALCOM 2019. Lecture Notes in Computer Science(), vol 11355. Springer, Cham. https://doi.org/10.1007/978-3-030-10564-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10564-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10563-1

  • Online ISBN: 978-3-030-10564-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics