Skip to main content

Exploring Endophytic Communities of Plants: Methods for Assessing Diversity, Effects on Host Development and Potential Biotechnological Applications

  • Chapter
  • First Online:

Abstract

Endophytic microbes colonize plants growing in diverse habitats and play important roles in modulating development and improving fitness of host plants. Endophytes may be major components of undiscovered microbial diversity. Further, endophytes may have applications in growth promotion of crop plants and protectors of plants from biotic and abiotic stresses. Endophytes have been a source of bioactive molecules of pharmaceutical importance. Major focus areas in the investigation of endophytes include (1) assessment of endophyte diversity, (2) determining the roles played by endophytes in modulation of host plant development and (3) assessing the biotechnological potentials of endophytes. The study of endophytes is particularly challenging because endophytic microbes often go unobserved in plants, many endophytes cannot be isolated, and plants free of endophytes sometimes cannot be obtained, making it difficult to conduct experiments. In this chapter we discuss some of the methodologies that are being used to overcome challenges to the study of endophytic microbes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ainsworth GC, Sparrow FK, Sussman AS (1973) The fungi: an advanced treatise, vol 4A. Academic Press, New York

    Google Scholar 

  • Bacon CW, White JF (1994) Stain, media and procedure for analyzing endophytes. In: Bacon CW, White JF (eds) Biotechnology of endophytic fungi of grasses. CRC Press, Boca Raton, FL, pp 47–56

    Google Scholar 

  • Bacon CW, White JF (2000) Microbial endophytes. Dekker, New York

    Google Scholar 

  • Barghouthi SA (2011) A universal method for the identification of bacteria based on general PCR primers. Indian J Microbiol 51(4):430–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnett HL, Hunter BB (1998) Illustrated genera of imperfect fungi, 4th edn. The American Phytopathological Society, St. Paul, MN

    Google Scholar 

  • Bills GF (1996) Isolation and analysis of endophytic fungal communities from woody plants. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants. APS Press, St. Paul, MN, pp 31–65

    Google Scholar 

  • Bills GF, Polishook JD (1992) Recovery of endophytic fungi from Chamaecyparis thyoides. Sydowia 44:1–12

    Google Scholar 

  • Bissegger M, Sieber TN (1994) Assemblages of endophytic fungi in coppice shoots of Castanea sativa. Mycologia 86:648–655

    Article  Google Scholar 

  • Blodgett JT, Swart WJ, Lnow SVd M, Weeks WJ (2007) Soil amendments and water influence the incidence of endophytic fungi in Amaranthus hybrids in South Africa. Appl Soil Ecol 35:311–318

    Article  Google Scholar 

  • Booth C (1971) The genus Fusarium. Commonwealth Mycological Institute, Kew

    Google Scholar 

  • Cabral D (1985) Phyllosphere of Eucalyptus viminalis: dynamics of fungal populations. Trans Br Mycol Soc 85:501–511

    Article  Google Scholar 

  • Card SD, Tapper BA, Loyd-West C, Wright KM (2013) Assessment of fluorescein-based fluorescent dyes for tracing Neotyphodium endophytes in planta. Mycologia 105(1):221–229

    Article  CAS  PubMed  Google Scholar 

  • Caroll GC (1995) Forest endophytes: patterns and process. Can J Bot 73:1316–1324

    Article  Google Scholar 

  • Carroll GC (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbionts. Ecology 69:2–9

    Article  Google Scholar 

  • Carroll GC, Carroll FE (1978) Studies on the incidence of coniferous needle endophytes in the Pacific Northwest. Can J Bot 56:3034–3043

    Article  Google Scholar 

  • Chithra S, Jasim B, Sachidanandan P, Jyothis M, Radhakrishnan EK (2014) Piperine production by endophytic fungus Colletotrichum gloeosporioides isolated from Piper nigrum. Phytomedicine 21:534–540

    Article  CAS  PubMed  Google Scholar 

  • Choudhury S, Panda P, Sahoo L, Panda SK (2013) Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav 8:e23681. https://doi.org/10.4161/psb.2368

    Article  PubMed  PubMed Central  Google Scholar 

  • Ciannamea S, Busscher-Lange J, de Folter S, Angenent GC, Immink RGH (2006) Characterization of the vernalization response in Lolium perenne by a cDNA microarray approach. Plant Cell Physiol 47:481–492

    Article  CAS  PubMed  Google Scholar 

  • Clarridge JE (2004) Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 17:840–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai CC, Yu BY, Li X (2008) Screening of endophytic fungi that promote the growth of Euphorbia pekinensis. Afr J Biotechnol 7:3505–3509

    CAS  Google Scholar 

  • Daudi A, O’Brien JA (2012) Detection of hydrogen peroxide by dab staining in arabidopsis leaves. Bio-protocol 2(18). http://www.bio-protocol.org/e263

  • De Hoog GS, Göttlich E, Platas G, Genilloud O, Leotta G, van Brummelen J (2005) Evolution, taxonomy and ecology of the genus Thelebolus in Antarctica. Stud Mycol 51:33–76

    Google Scholar 

  • Dinkins RD, Barnes A, Waters W (2010) Microarray analysis of endophyte-infected and endophyte-free tall fescue. J Plant Physiol 167:1197–1203

    Article  CAS  PubMed  Google Scholar 

  • Duarte K, Rocha-Santos TAP, Freitas AC, Duarte AC (2012) Analytical techniques for discovery of bioactive compounds from marine fungi. Trends Analytic Chem 34(1):97–110

    Article  CAS  Google Scholar 

  • Duong LM, Jeewon R, Lumyong S, Hyde KD (2006) DGGE coupled with ribosomal DNA gene phylogenies reveal uncharacterized fungal phylotypes. Fungal Divers 23:121–138

    Google Scholar 

  • Ellis MB (1976) More dematiaceous hyphomycetes. Commonwealth Mycological Institute, Kew

    Google Scholar 

  • Espinosa-Garcia FJ, Langenheim JH (1990) The endophytic fungal community in leaves of coastal redwood population diversity and spatial patterns. New Phytologist 116:89–97

    Article  Google Scholar 

  • Feletti SA, Shields K, Ramsperger M, Tian P, Webster T, Ong EK, Sawbridge T, Spagenberg G (2004) Gene discovery and microarray based transcriptome analysis in grass endophytes. In: Hopkins A et al (eds) Proceedings of the 3rd international symposium, molecular breeding of forage and turf. Kluwer Academic, Dordrecht, pp 145–153

    Chapter  Google Scholar 

  • Felitti S, Shields K, Ramsperger M, Tian P, Sawbridge T, Webster T et al (2006) Transcriptome analysis of Neotyphodium and Epichloe grass endophytes. Fungal Genet Biol 43:465–475

    Article  CAS  PubMed  Google Scholar 

  • Fisher PJ, Petrini O (1990) A comparative study of fungal endophytes in xylem and bark of Alnus species in England and Switzerland. Mycol Res 94:313–319

    Article  Google Scholar 

  • Fisher PJ, Anson AE, Petrini O (1986) Fungal endophytes in Ulex europaeus and Ulex galli. Trans Br Mycol Soc 86:153–156

    Article  Google Scholar 

  • Fisher PJ, Pertini O, Petrini LE, Sutton BC (1994) Fungal endophytes from leaves and twigs of Quercus ilex L. from England, Majorca and Switzerland. New Phytol 127:133–137

    Article  PubMed  Google Scholar 

  • Fröhlich J, Hyde KD, Petrini O (2000) Endophytic fungi associated with palms. Mycol Res 104:1202–1212

    Article  Google Scholar 

  • Gamboa MA, Laureano S, Bayman P (2002) Measuring diversity of endophytic fungi in leaf fragments: Does size matter? Mycopathologia 156:41–45

    Article  PubMed  Google Scholar 

  • Gao F, Dai C, Liu X (2010) Mechanisms of fungal endophytes in plant protection against pathogens. Afr J Biotechnol Res 4(13):1346–1351

    Google Scholar 

  • Ghimire SR, Hyde KD (2004) Fungal endophytes. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Berlin

    Google Scholar 

  • Gond SK, Mishra A, Sharma VK, Verma SK, Kumar J, Kharwar RN, Kumar A (2011) Diversity and antimicrobial activity of endophytic fungi isolated from Nyctanthes arbor-tristis, a well-known medicinal plant of India. Mycoscience 53:113–121

    Article  Google Scholar 

  • Gond SK, Mishra A, Sharma VK, Verma SK, Kharwar RN (2014a) Isolation and characterization of antibacterial naphthalene derivative from Phoma herbarum, an endophytic fungus of Aegle marmelos. Curr Sci 105:167–169

    Google Scholar 

  • Gond SK, Kharwar RN, White JF Jr (2014b) Will fungi be the new source of the blockbuster drug taxol? Fung Biol Rev 28:77–84

    Article  Google Scholar 

  • Gond SK, Torres MS, Bergen MS, Helse Z, White JF Jr (2015a) Induction of salt tolerance and up-regulation of aquaporin genes in tropical corn by rhizobacterium Pantoea agglomerans. Lett Appl Microbiol 60:392–399

    Article  CAS  PubMed  Google Scholar 

  • Gond SK, Bergen MS, Torres MS, White JF (2015b) Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res 172:79–87

    Article  CAS  PubMed  Google Scholar 

  • Green SJ, Freeman S, Hadar Y, Minz D (2004) Molecular tools for isolate and community studies of perinomycete fungi. Mycologia 96:439–451

    Article  CAS  PubMed  Google Scholar 

  • Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity and implications of their occurrence. J Nat Prod 69:509–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo LD, Hyde KD, Liew ECY (1998) A method to promote sporulation in palm endophytic fungi. Fungal Divers 1:109–113

    Google Scholar 

  • Guo LD, Hyde KD, Liew ECY (2001) Detection and taxonomic placement of endophytic fungi within frond tissues of Livistona chinensis based on rDNA sequences. Mol Phylogenet Evol 20:1–13

    Article  PubMed  CAS  Google Scholar 

  • Guo LD, Huang GR, Wang Y, He WH, Zheng WH, Hyde KD (2003) Molecular identification of white morphotype strains of endophytic endophytic fungi from Pinus tabulaeformis. Mycol Res 107(6):680–688

    Article  CAS  PubMed  Google Scholar 

  • Hallmann J, Berg G, Schulz B (2006) Isolation procedures for endophytic microorganisms. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes, vol 9. Soil biology. pp 299–319

    Google Scholar 

  • Hata F, Futai K (1995) Endophytic fungi associated with healthy pine needles and needles infested by pine needle gall midge Thecodiplosis japonensis. Can J Bot 73:384–390

    Article  Google Scholar 

  • Hawksworth DL (1987) Observations on three algicolus microfungi. Notes R Bot Gard, Edinb 44:549–560

    Google Scholar 

  • Hood ME, Shew HD (1996) Applications of KOH-aniline blue fluorescence in the study of plant-fungal interactions. Phytopathology 86:704–708

    Article  Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180(18):4765–4774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173

    Google Scholar 

  • Hyde KD, Frohlich J, Taylor JE (1997) In: Hyde KD (ed) Diversity of Ascomycetes on palms in the tropics. Biodiversity of tropical microfungi. Hong Kong University Press, Hong Kong, pp 141–156

    Google Scholar 

  • Irizarry I, White JF (2017) Application of bacteria from non-cultivated plants to promote growth, alter root architecture and alleviate salt stress of cotton. J Appl Microbiol. https://doi.org/10.1111/jam.13414

  • Iwen PC, Hinrichs SH, Rupp ME (2002) Utilization of the internal transcribed spacer regions as molecular targets to detect and identify human fungal pathogens. Med Mycol 40:87–109

    Article  CAS  PubMed  Google Scholar 

  • Johnson LJ, Johnson RD, Schardl CL, Panaccione DG (2003) Identification of differentially expressed genes in the mutualistic association of tall fescue with Neotyphodium coenophialum. Physiol Mol Plant Pathol 63:305–317

    Article  CAS  Google Scholar 

  • Jumpponen A, Jones KL (2009) Massively parallel 454 sequencing indicate hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol 18:438–448

    Article  CAS  Google Scholar 

  • Kaul S, Sharma T, Dhar MK (2014) Omics tools for better understanding the plant endophyte interactions. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00955

  • Kharwar RN, Verma VC, Kumar A, Gond SK, Harper JK, Hess WM, Ma C, Ren Y, Strobel GA (2009) Javanicin, an antibacterial naphthaquinone from an endophytic fungus of Neem, Chloridium sp. Curr Microbiol 58:233–238

    Article  CAS  PubMed  Google Scholar 

  • Kharwar RN, Verma SK, Mishra A, Gond SK, Sharma VK, Afreen T, Kumar A (2011a) Assessment of diversity, distribution and antibacterial activity of endophytic fungi isolated from a medicinal plant Adenocalyma alliaceum Miers. Symbiosis 55:39–46

    Article  Google Scholar 

  • Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D (2011b) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28:1208–1228

    Article  CAS  PubMed  Google Scholar 

  • Khot PD, Ko DL, Fredricks DN (2009) Sequencing and analysis of fungal rRNA operons for development of broad-range fungal PCR assays. Appl Environ Microbiol 75:1559–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar DSS, Hyde KD (2004) Biodiversity and tissue-recurrence of endophytic fungi in Tripterygium wilfordii. Fungal Divers 17:69–90

    CAS  Google Scholar 

  • Kumar J, Sharma VK, Singh DK, Mishra A, Gond SK, Verma SK, Kumar A, Kharwar RN (2016) Epigenetic activation of antibacterial property of an endophytic Streptomyces coelicolor Strain AZRA 37 and identification of the induced protein using MALDI TOF MS/MS. PLoS One 11(2):e0147876. https://doi.org/10.1371/journal.pone.0147876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumaresan V, Suryanarayanan TS (2002) Endophyte assemblage in young, mature and senescent leaves of Rhizophora apiculata: evidence for the role of endophytes in mangrove litter degradation. Fungal Divers 9:81–91

    Google Scholar 

  • Kusari S, Spiteller M (2011) Are we ready for industrial production of bioactive plant secondary metabolites utilizing endophytes? Nat Prod Rep 28:1203–1207

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Spiteller M (2012) Camptothecin: recent advances in plant endophyte research. In: Patro LR (ed) Natural resources conservation and management. Manglam Publications, New Delhi, pp 1–32

    Google Scholar 

  • Kusari S, Lamshoft M, Zuhlke S, Spiteller M (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71:159–162

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Zuhlke S, Spiteller M (2009) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72:2–7

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19(7):792–798

    Article  CAS  PubMed  Google Scholar 

  • Kutser E, Williams ST (1964) Selection of media for the isolation of Streptomyces. Nature 202:928–929

    Article  Google Scholar 

  • Li WC, Zhou J, Guo SY, Guo LD (2007) Endophytic fungi associated with lichens in Baihua mountain of Beijing, China. Fungal Divers 25:69–80

    Google Scholar 

  • Li E, Tian R, Liu S, Chen X, Guo L, Che Y (2008) Pestalotheols A-D, bioactive metabolites from the plant endophytic fungus Pestalotiopsis theae. J Nat Prod 71(4):664–668

    Article  CAS  PubMed  Google Scholar 

  • Lindahl BD, Nilsson RH, Tedersoo L et al (2013) Fungal community analysis by high-throughput sequencing of amplified markers – a user’s guide. New Phytol 199:288–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Dong M, Chen X, Jiang M, Lv X, Yan G (2007) Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba. Food Chem 105:548–554

    Article  CAS  Google Scholar 

  • Lucero ME, Unc A, Cooke P, Dowd S, Sun SL (2011) Endophyte microbiome diversity in micropropagated Atriplex canescens and Atriplex torreyi var. griffithsii. PLoS One 6:e17693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma LJ, Catramis CM, Rogers SO, Starmer WT (1997) Isolation and characterization fungi entrapped in glacial ice. Inoculum 48:23–24

    Google Scholar 

  • Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940

    Article  CAS  Google Scholar 

  • Manter Daniel K, Delgado JA, Holm DJ, Stong RA (2010) Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. Microbial Ecol 60(1):157–166

    Article  CAS  Google Scholar 

  • Marco D (2011) Metagenomics: current innovations and future trends. Caister Academic Press. ISBN 978-1-904455-87-5

  • Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24(3):133–141

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Gond SK, Kumar A, Sharma VK, Verma SK, Kharwar RN, Sieber TN (2012) Season and tissue type affect fungal endophyte communities of the Indian medicinal plant Tinospora cordifolia more strongly than geographic location. Microb Ecol 64:3288–3398

    Article  Google Scholar 

  • Mousa WK, Shearer C, Limay-Rios V, Ettinger CL, Eisen JA, Raizada MN (2016) Root-hair endophyte stacking in finger millet creates a physicochemical barrier to trap the fungal pathogen Fusarium graminearum. Nat Microbiol 16167. https://doi.org/10.1038/NMICROBIOL.2016.167

  • Omacini M, Chaneton EJ, Ghersa CM, Müller CB (2001) Symbiotic fungal endophytes control insect host–parasite interaction webs. Nature 409:78–81

    Article  CAS  PubMed  Google Scholar 

  • Orduña FNR, Sanchez RAS, Bustamante ZRF, Rodriguez JNG, Cotera LBF (2011) Diversity of endophytic fungi of Taxus globosa (Mexican yew). Fungal Divers 47:65–74

    Article  Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Adrews J, Hirano S (eds) Microbial ecology of leaves. Springer, Berlin, pp 179–197

    Chapter  Google Scholar 

  • Petrini O, Fisher PJ (1988) A comparative study of fungal endophytes in xylem and whole stems of Pinus sylvestris and Fagus sylvatica. Trans Br Mycol Soc 91:233–238

    Article  Google Scholar 

  • Petrini O, Muller E (1979) Pilzliche Endophyten, am Beispiel von Juniperus communis L. Sydowia 32:224–251

    Google Scholar 

  • Petrini O, Stone JK, Carroll FE (1982) Endophytic fungi in evergreen shrubs in western Oregon: a preliminary study. Can J Bot 60:789–796

    Article  Google Scholar 

  • Petrini O, Hake U, Dreyfuss MM (1990) An analysis of fungal communities isolated from fruticose lichens. Mycologia 82:444–451

    Article  Google Scholar 

  • Petrini O, Sieber TN, Toti L, Viret O (1992) Ecology, metabolite production and substrate utilization in endophytic fungi. Nat Toxin 1:185–196

    Article  CAS  Google Scholar 

  • Ranghoo VM, Hyde KD, Liew ECY, Spatafora JW (1999) Family placement of Ascotaiwanian and Ascolacicola based on DNA sequences from the large subunit rRNA gene. Fungal Divers 2:159–168

    Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298:1581

    Article  CAS  PubMed  Google Scholar 

  • Redman RS, Kim YO, Woodward CJDA, Greer C, Espino L et al (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS One 6(7):e14823. https://doi.org/10.1371/journal.pone.0014823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez RJ, White JF, Arnold JAE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  • Romero FM, Marina M, Pieckenstain FI (2014) The community of tomato (Solanum lycopersicum L.) leaf endophytic bacteria, analyzed by 16s-ribosomal RNA gene pyrosequencing. FEMS Microbiol Lett 351:187–194

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  • Sawbridge T, Ong E-K, Binnion C, Emmerling M et al (2003) Generation and analysis of expressed sequence tags in perennial ryegrass (Lolium perenne L.). Plant Sci 165:1089–1100

    Article  CAS  Google Scholar 

  • Schulz B, Wanke U, Draeger S (1993) Endophytes from herbaceous and shrubs: effectiveness of surface sterilization methods. Mycol Res 97:1447–1450

    Article  Google Scholar 

  • Schulz B, Guske S, Dammann U, Boyle C (1998) Endophyte–host interaction II. Defining symbiosis of the endophyte–host interaction. Symbiosis 25:213–227

    Google Scholar 

  • Schulz B, Boyle C, Draeger S, Mmert AKR, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106(9):996–1004

    Article  CAS  Google Scholar 

  • Segata N, Boernigen D, Tickle TL, Morgan XC, Garrett WS, Huttenhower C (2013) Computational meta'omics for microbial community studies. Mol Syst Biol 9(666):666. https://doi.org/10.1038/msb.2013.22

    Article  PubMed  PubMed Central  Google Scholar 

  • Sessitsch P, Hardoim J, Doring A, Weilharter A, Krause T, Woyke B et al (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant Microbe Interact 25:28–36

    Article  CAS  PubMed  Google Scholar 

  • Shweta S, Zuehlke S, Ramesha BT, Priti V, Kumar PM, Ravikanth G, Spiteller M et al (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71:117–122

    Article  CAS  PubMed  Google Scholar 

  • Staley JT, Konopka A (1985) Measurement of in situ activities of non photosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346

    Article  CAS  PubMed  Google Scholar 

  • Stewart EJ (2012) Growing unculturable bacteria. J Bacteriol 194:4151–4416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stierle A, Strobel GA, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae an endophytic fungus of Pacific yew. Science 260:214–216

    Article  CAS  PubMed  Google Scholar 

  • Stone JK, Polishook JD, White JF (2004) Endophytic fungi. In: Mueller G, Bills GF, Foster MS (eds) Biodiversity of fungi: inventory and monitoring methods. Elsevier, Burlington, MA, pp 241–270

    Chapter  Google Scholar 

  • Strobel GA, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Res 67:491–502

    Article  CAS  Google Scholar 

  • Strobel GA, Miller RV, Miller C, Condron M, Teplow DB, Hess WM (1999) Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 145:1919–1926

    Article  CAS  PubMed  Google Scholar 

  • Strobel G, Ford E, Worapong J, Harper JK, Arif AM, Grant DM, Fung PCW, Chau RMW (2002) Isopestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry 60:179–183

    Article  CAS  PubMed  Google Scholar 

  • Sugita T, Nishikawa A (2003) Fungal identification method based on DNA sequence analyisis: reassessment of the method of Pharmaceutical society of Japan and the Japanese Pharmacopoeia. J Health Sci 49(6):531–533

    Article  CAS  Google Scholar 

  • Sun X, Guo L-D (2012) Endophytic fungal diversity: review of traditional and molecular techniques. Mycology 3(1):65–76

    Google Scholar 

  • Sun JQ, Guo LD, Zang W, Ping WX, Chi DF (2008) Diversity and ecological distribution of endophytic fungi associated with medicinal plants. Sci China Ser C 51:751–759

    Article  Google Scholar 

  • Suryanarayanan TS, Senthilarasu G, Muruganandam V (2000) Endophytic fungi from Cuscuta reflexa and its host plants. Fungal Divers 4:117–123

    Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  CAS  PubMed  Google Scholar 

  • Taylor JE, Hyde KD, Jones EBG (1999) Endophytic fungi associated with the temperate palm, Trachycarpus fortunei, within and outside its natural geographic range. New Phytol 142:335–346

    Article  Google Scholar 

  • Thirugnanasambandam A, Wright KM, Atkins SD, Whisson SC, Newton AC (2011) Infection of Rrs1 barley by an incompatible race of the fungus Rhynchosporium secalis expressing the green fluorescent protein. Plant Pathol 60:513–521

    Article  Google Scholar 

  • Thomas P, Reddy KM (2013) Microscopic elucidation of abundant endophytic bacteria colonizing the cell wall–plasma membrane peri-space in the shoot-tip tissue of banana. AoB PLANTS 5:plt011. https://doi.org/10.1093/aobpla/plt011

    Article  PubMed Central  Google Scholar 

  • Thomas T, Gilbert J, Meyer F (2012) Metagenomics – a guide from sampling to data analysis. Microb Inform Exp 2:3. http://www.microbialinformaticsj.com/content/2/1/3

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian BY, Cao Y, Zhang K-Q (2015) Metagenomic insights into communities, functions of endophytes, and their associates with infection by root-knot nematode, Meloidogyne incognita, in tomato roots. Sci Rep 5:17087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toju H, Yamamoto S, Sato H, Tanabe AS, Gilbert GS, Kadowaki K (2013) Community composition of root-associated fungi in a Quercus-dominated temperate forest: “codominance” of mycorrhizal and root-endophytic fungi. Ecol Evol 3:1281–1293. https://doi.org/10.1002/ece3.546

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma VC, Gond SK, Kumar A, Kharwar RN, Strobel GA (2007) Endophytic mycoflora from leaf, bark, and stem of Azadirachta indica A Juss. from Varanasi, India. Microb Ecol 54:119–125

    Article  CAS  PubMed  Google Scholar 

  • Verma VC, Kharwar RN, Strobel GA (2009a) Chemical and functional diversity of natural products from plant associated endophytic fungi. Nat Prod Commun 4(11):1511–1532

    CAS  PubMed  Google Scholar 

  • Verma VC, Gond SK, Kumar A, Mishra A, Kharwar RN, Gange A (2009b) Endophytic actinomycetes from Azadirachta indica A. Juss.: isolation, diversity, and anti-microbial activity. Microbial Ecol 57:749–756

    Article  Google Scholar 

  • Verma VC, Gond SK, Kumar A, Kharwar RN, Boulanger LA, Strobel GA (2011) Endophytic fungal flora from roots and fruits of an Indian neem plant Azadirachta indica A. Juss., and impact of culture media on their isolation. Indian J Microbiol 51(4):469–476

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma SK, Gond SK, Mishra A, Sharma VK, Kumar J, Singh DK, Kumar A, Goutam J, Kharwar RN (2014) Impact of environmental variables on the isolation, diversity and antibacterial activity of endophytic fungal communities from Madhuca indica Gmel. at different locations in India. Ann Microbiol 64(2):721–734

    Article  CAS  Google Scholar 

  • Verma SK, Kingsley K, Irizarry I, Bergen M, Kharwar RN, White JF (2017) Seed vectored endophytic bacteria modulate development of rice seedlings. J Appl Microbiol 22:1680–1691

    Article  CAS  Google Scholar 

  • Von Arx JA (1978) The genera of fungi sporulating in pure culture. Gantner AR, Verlag KG, Vaduz

    Google Scholar 

  • Wang Y, Ohara Y, Nakayashiki H, Tosa Y, Mayama S (2005) Microarray analysis of the gene expression profile induced by the endophytic plant growth promoting rhizobacteria bacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Mol Plant Microbe Interact 18:385–396

    Article  CAS  PubMed  Google Scholar 

  • Wang FW, Ye YH, Chen JR, Wang XT, Zhu HL, Song YC, Tan RX (2006) Neoplaether, a new cytotoxic and antifungal endophyte metabolite from Neoplaconema napellum IFB-E016. FEMS Microbiol Lett 261:218–223

    Article  CAS  PubMed  Google Scholar 

  • White JF Jr, Crawford H, Torres MS, Mattera R, Irizarry I, Bergen M (2012) A proposed mechanism for nitrogen acquisition by grass seedlings through oxidation of symbiotic bacteria. Symbiosis 57:161–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White JF Jr, Torres MS, Somu MP, Johnson H, Irizarry I, Chen Q, Zhang N, Walsh E, Tadych M, Bergen M (2014a) Hydrogen peroxide staining to visualize bacterial infections of seedling root cells. Microscop Res Techniq 77:566–573

    Article  CAS  Google Scholar 

  • White JF, Torres MS, Sullivan RF, Jabbour RE, Chen Q, Tadych M et al (2014b) Occurrence of Bacillus amyloliquefaciens as a systemic endophyte of vanilla orchids. Microsc Res Tech 77(11):874–885. https://doi.org/10.1002/jemt.22410

    Article  CAS  PubMed  Google Scholar 

  • White TF, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky FS, White TT (eds) PCR protocol: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • White JF, Chen Q, Torres MS, Mattera R, Irizarry I, Tadych M, Bergen M (2015) Collaboration between grass seedlings and rhizobacteria to scavenge organic nitrogen in soils. AoB PLANTS 7:plu093. https://doi.org/10.1093/aobpla/plu093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White JF, Kingsley K, Kowalski KP, Irizarry I, Micci A, Soares M, Bergen MS (2017) Disease protection and allelopathic interactions of seed-transmitted endophytic pseudomonads of invasive reed grass (Phragmites australis). Plant Soil. https://doi.org/10.1007/s11104-016-3169-6

  • Xu J, Yang X, Lin Q (2014) Chemistry and biology of Pestalotiopsis-derived natural products. Fungal Divers 66:37–68

    Article  Google Scholar 

  • Zhang W, Wildel JF, Clark LG (1997) Bamboozled again! Inadvertent isolation of fungal rDNA sequences from bamboos (Poaceae: Bambusoideae). Mol Phylogenet Evol 8:205–217

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Plant Biology, Rutgers University, NJ, for providing the facilities. SKV acknowledges UGC, India, for providing a Raman Post Doctoral fellowship No. F 5-11/2016(IC) for the year (2016–2017) to work in the USA. The SKV and RNK are also grateful to the Head and Coordinator CAS and DST-FIST and PURSE of Botany, BHU, Varanasi, for providing the facilities and leave to pursue endophyte research. SKV acknowledges the support from UGC (Project – UGC-BSR startup-M14-26). The authors are also grateful for the support from the John E. and Christina C. Craighead Foundation, USDA-NIFA Multistate Project W3147 and the New Jersey Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, S.K., Kharwar, R.N., Gond, S.K., Kingsley, K.L., White, J.F. (2019). Exploring Endophytic Communities of Plants: Methods for Assessing Diversity, Effects on Host Development and Potential Biotechnological Applications. In: Verma, S., White, Jr, J. (eds) Seed Endophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-10504-4_4

Download citation

Publish with us

Policies and ethics