Skip to main content

Microbial Endophytes of Maize Seeds and Their Application in Crop Improvements

  • Chapter
  • First Online:

Abstract

Maize is one of the main cereal crops grown all over the world. The presence of microbial endophytes which reside asymptomatically inside maize seeds may influence the yield and quality of crop. The present review concentrates on underexplored endophytes, such as seed-borne bacterial and fungal endophytes. The review encompasses the role of maize seed’s endophytes in enhancing crop efficiency, the nature of vertical transmission and secondary metabolites production, their belowground function, and the aboveground response. The diversity of endophytes in maize seed is discussed in detail focusing also on methodology applied for their isolation. This review may render help for the researchers working on the improvement of crops modulated through seed endophytes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saudi Univ Sci 26(1):1–20

    Article  Google Scholar 

  • Bacilio-Jiménez M, Aguilar-Flores S, del Valle MV et al (2001) Endophytic bacteria in rice seeds inhibit early colonization of roots by Azospirillum brasilense. Soil Biol Biochem 33(2):167–172

    Article  Google Scholar 

  • Bacon CW, Hinton DM (1996) Symptomless endophytic colonization of maize by Fusarium moniliforme. Can J Bot 74:1195–1202

    Article  Google Scholar 

  • Bacon CW, Yates IE, Hinton DM et al (2001) Biological control of Fusarium moniliforme in maize. Environ Health Perspect 109(Suppl 2):325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bacon CW, Palencia ER, Hinton DM (2015) Abiotic and biotic plant stress-tolerant and beneficial secondary metabolites produced by endophytic Bacillus species. In: Arora N (ed) Plant microbes symbiosis: applied facets. Springer, New Delhi, pp 163–177

    Google Scholar 

  • Barea JM, Pozo MJ, Azcon R et al (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56(417):1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Berg MP, Kiers E, Driessen G et al (2010) Adapt or disperse: understanding species persistence in a changing world. Glob Chang Biol 16(2):587–598

    Article  Google Scholar 

  • Block CC, Hill JH, McGee DC (1998) Seed transmission of Pantoea stewartii in field and sweet corn. Plant Dis 82(7):775–780

    Article  CAS  PubMed  Google Scholar 

  • Bodhankar S, Grover M, Hemanth S et al (2017) Maize seed endophytic bacteria: dominance of antagonistic, lytic enzyme-producing Bacillus spp. 3 Biotech 7(4):232

    Article  PubMed  PubMed Central  Google Scholar 

  • Cankar K, Kraigher H, Ravnikar M et al (2005) Bacterial endophytes from seeds of Norway spruce (Piceaabies L. Karst). FEMS Microbiol Lett 244(2):341–345

    Article  CAS  PubMed  Google Scholar 

  • Chelius MK, Triplett EW (2000a) Immunolocalization of dinitrogenase reductase produced by Klebsiella pneumoniae in association with Zea mays L. Appl Environ Microbiol 66(2):783–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chelius MK, Triplett EW (2000b) Diazotrophic endophytes associated with maize. In: Triplett EW (ed) Prokaryotic nitrogen fixation: a model system for the analysis of a biological process. Horizon Scientific Press, Norfolk, pp 779–792

    Google Scholar 

  • Christiansen-Weniger C, Vanderleyden J (1994) Ammonium-excreting Azospirillum sp. become intracellularly established in maize (Zea mays) para-nodules. Biol Fertil Soils 17(1):1–8

    Article  Google Scholar 

  • Cohen AC, Travaglia CN, Bottini R et al (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87(5):455–462

    Article  CAS  Google Scholar 

  • Compant S, Mitter B, Colli-Mull JG et al (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62(1):188–197

    Article  PubMed  Google Scholar 

  • Cosme M, Lu J, Erb M et al (2016) A fungal endophyte helps plants to tolerate root herbivory through changes in gibberellin and jasmonate signaling. New Phytol 211(3):1065–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cottyn B, Regalado E, Lanoot B et al (2001) Bacterial populations associated with rice seed in the tropical environment. Phytopathology 91(3):282–292

    Article  CAS  PubMed  Google Scholar 

  • Donald TW, Shoshannah ROTH, Deyrup ST et al (2005) A protective endophyte of maize: Acremonium zeae antibiotics inhibitory to Aspergillus flavus and Fusarium verticillioides. Mycol Res 109(5):610–618

    Article  Google Scholar 

  • Dong Y, Glasner JD, Blattner FR et al (2001) Genomic interspecies microarray hybridization: rapid discovery of three thousand genes in the maize endophyte, Klebsiella pneumoniae 342, by microarray hybridization with Escherichia coli K12 open reading frames. Appl Environ Microbiol 67(4):1911–1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunleavy JM (1989) Curtobacterium plantarum sp. nov. is ubiquitous in plant leaves and is seed transmitted in soybean and corn. Int J Syst Evol Microbiol 39(3):240–249

    Google Scholar 

  • Elmer WH (2001) Seeds as vehicles for pathogen importation. Biol Invasions 3:263–271

    Article  Google Scholar 

  • Ernst M, Mendgen KW, Wirsel SG (2003) Endophytic fungal mutualists: seed-borne Stagonospora spp. enhance reed biomass production in axenic microcosms. Mol Plant-Microbe Interact 16(7):580–587

    Article  CAS  PubMed  Google Scholar 

  • Ferreira A, Quecine MC, Lacava PT et al (2008) Diversity of endophytic bacteria from eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans. FEMS Microbiol Lett 287:8–14

    Article  CAS  PubMed  Google Scholar 

  • Fisher PJ, Petrini O, Scott HL (1992) The distribution of some fungal and bacterial endophytes in maize (Zea mays L.). New Phytol 122(2):299–305

    Article  PubMed  Google Scholar 

  • Gond SK, Bergen MS, Torres MS et al (2015a) Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defense gene expression in maize. Microbiol Res 172:79–87

    Article  CAS  PubMed  Google Scholar 

  • Gond SK, Torres MS, Bergen MS et al (2015b) Induction of salt tolerance and up-regulation of aquaporin genes in tropical corn by rhizobacterium Pantoea agglomerans. Lett Appl Microbiol 60(4):392–399

    Article  CAS  PubMed  Google Scholar 

  • Guan KL (2009) Seed physiological ecology (in Chinese). Chinese Agricultural Press, Beijing, pp 1–7

    Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16(10):463–471

    Article  CAS  PubMed  Google Scholar 

  • Hinton DM, Bacon CW (1995) Enterobacter cloacae is an endophytic symbiont of corn. Mycopathologia 129(2):117–125

    Article  CAS  PubMed  Google Scholar 

  • Hodgson S, Cates C, Hodgson J et al (2014) Vertical transmission of fungal endophytes is widespread in forbs. Ecol Evol 4(8):1199–1208

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnston-Monje D, Raizada MN (2011) Plant and endophyte relationships: nutrient management. In: Comprehensive biotechnology, 2nd edn. Academic Press, Burlington, pp 713–727

    Chapter  Google Scholar 

  • Kaga H, Mano H, Tanaka F et al (2009) Rice seeds as sources of endophytic bacteria. Microb Environ 24:154–162

    Article  Google Scholar 

  • Kremer RJ (1987) Identity and properties of bacteria inhabiting seeds of selected broadleaf weed species. Microb Ecol 14(1):29–37

    Article  CAS  PubMed  Google Scholar 

  • Lata R, Chowdhury S, Gond SK, White JFJ (2018) Induction of abiotic stress tolerance in plants by endophytic microbes. Lett Appl Microbiol 66(4):268–276

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zuo S, Xu L et al (2012) Study on diversity of endophytic bacterial communities in seeds of hybrid maize and their parental lines. Arch Microbiol 194(12):1001–1012

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zuo S, al ZY (2013) Investigation on diversity and population succession dynamics of endophytic bacteria from seeds of maize (Zea mays L., Nongda108) at different growth stages. Ann Microbiol 63(1):71–79

    Article  Google Scholar 

  • Liu Y, Wang R, Li Y et al (2017) High-throughput sequencing-based analysis of the composition and diversity of endophytic bacterial community in seeds of “Beijing” hybrid maize planted in China. Plant Growth Regul 81(2):317–324

    Article  CAS  Google Scholar 

  • Mano H, Tanaka F, Watanabe A et al (2006) Culturable surface and endophytic bacterial flora of the maturing seeds of rice plants (Oryza sativa) cultivated in a paddy field. Microb Environ 21:86–100

    Article  Google Scholar 

  • Martínez-Medina A, Fernandez I, Lok GB et al (2017) Shifting from priming of salicylic acid to jasmonic acid regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita. New Phytol 213(3):1363–1377

    Article  PubMed  Google Scholar 

  • Matsuoka Y, Vigouroux Y, Goodman MM et al (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99:6080–6084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayerhofer MS, Kernaghan G, Harper KA (2012) The effects of fungal root endophytes on plant growth: a meta-analysis. Mycorrhiza 23:119–128

    Article  PubMed  Google Scholar 

  • Miedaner T, Bolduan C, Melchinger AE (2010) Aggressiveness and mycotoxin production of eight isolates each of Fusarium graminearum and Fusarium verticillioides for ear rot on susceptible and resistant early maize inbred lines. Eur J Plant Pathol 127(1):113–123

    Article  CAS  Google Scholar 

  • Montanez A, Blanco AR, Barlocco C et al (2012) Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. Appl Soil Ecol 58:21–28

    Article  Google Scholar 

  • Mousa WK, Shearer CR, Limay-Rios V et al (2015) Bacterial endophytes from wild maize suppress Fusarium graminearum in modern maize and inhibit mycotoxin accumulation. Front Plant Sci 6:805

    PubMed  PubMed Central  Google Scholar 

  • Mundt JO, Hinkle NF (1976) Bacteria within ovules and seeds. Appl Environ Microbiol 32:694–698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson EB (2004) Microbial dynamics and interactions in the spermosphere. Annu Rev Phytopathol 42:271–309

    Article  CAS  PubMed  Google Scholar 

  • Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190(3):783–793

    Article  CAS  PubMed  Google Scholar 

  • Orole OO, Adejumo TO (2011) Bacterial and fungal endophytes associated with grains and roots of maize. J Ecol Nat Environ 3(9):298–303

    Google Scholar 

  • Palus JA, Borneman J, Ludden PW et al (1996) Isolation and characterization of endophytic diazotrophs from Zea mays L. and Zea luxurians Iltis and Doebley. Plant Soil 186:135–142

    Article  CAS  Google Scholar 

  • Peay KG, Bidartondo MI, Elizabeth Arnold A (2010) Not every fungus is everywhere: scaling to the biogeography of fungal–plant interactions across roots, shoots and ecosystems. New Phytol 185(4):878–882

    Article  PubMed  Google Scholar 

  • Ranum P, PeñaRosas JP, GarciaCasal MN (2014) Global maize production, utilization, and consumption. Ann N Y Acad Sci 1312(1):105–112

    Article  PubMed  Google Scholar 

  • Redman RS, Sheehan KB, Stout RG et al (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298(5598):1581–1581

    Article  CAS  PubMed  Google Scholar 

  • Rijavec T, Lapanje A, Dermastia M et al (2007) Isolation of bacterial endophytes from germinated maize kernels. Can J Microbiol 53:802–808

    Article  CAS  PubMed  Google Scholar 

  • Rojas CM, Senthil-Kumar M, Tzin V et al (2014) Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Front Recent Dev Plant Sci 5:17

    Google Scholar 

  • Rosenblueth M, López-López A, Martínez J, Rogel MA, Toledo I, Martínez-Romero E (2010) Seed bacterial endophytes: common genera, seed-to-seed variability and their possible role in plants. In: XXVIII international horticultural congress on science and horticulture for people (IHC2010): international symposium on 938, pp 39–48

    Google Scholar 

  • Sandhya V, Shrivastava M, Ali SZ et al (2017) Endophytes from maize with plant growth promotion and biocontrol activity under drought stress. Russ Agric Sci 43(1):22–34

    Article  Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340

    Article  CAS  PubMed  Google Scholar 

  • Sheibani-Tezerji R, Naveed M, Jehl MA et al (2015) The genomes of closely related Pantoea ananatis maize seed endophytes having different effects on the host plant differ in secretion system genes and mobile genetic elements. Front Microbiol 6:440

    Article  PubMed  PubMed Central  Google Scholar 

  • Song Z, Kennedy PG, Liew FJ et al (2017) Fungal endophytes as priority colonizers initiating wood decomposition. Funct Ecol 31(2):407–418

    Article  Google Scholar 

  • Strobel G, Daisy B, Castillo U et al (2004) Natural products from endophytic microorganisms. J Nat Prod 67(2):257–268

    Article  CAS  PubMed  Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19(1):1–30

    Article  Google Scholar 

  • Sullivan TJ, Rodstrom J, Vandop J et al (2007) Symbiont-mediated changes in Lolium arundinaceum inducible defenses: evidence from changes in gene expression and leaf composition expression and leaf composition. New Phytol 176:673–679

    Article  CAS  PubMed  Google Scholar 

  • Tripathi A, Joshi N, Kumar A (2016) Maize production technologies in India-a review. Octa J Environ Res 4(3):234–251

    Google Scholar 

  • Wang JL, Li T, Liu GY et al (2016) Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects. Sci Rep 6:22028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkes G (2004) Corn, strange and marvelous: but is a definitive origin known? In: Smith CW, Betran J, Runge ECA (eds) Corn: origin, history, technology, and production. Wiley, Hoboken, NJ, pp 3–63

    Google Scholar 

  • Yates IE, Bacon CW, Hinton DM (1997) Effects of endophytic infection by Fusarium moniliforme on corn growth and cellular morphology. Plant Dis 81:723–728

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Authors are thankful to the Department of Botany, MMV, Banaras Hindu University for providing necessary facility. RL acknowledges UGC New Delhi, for Junior Research Fellowship. Financial support from SERB, New Delhi (EEQ/2016/000555), is greatly acknowledged. RNK expresses his thanks to SERB (DST), New Delhi, for project (SB/EMEQ-121/2014) and to Head & Coordinator, CAS and DST-FIST in Botany, Institute of Science, BHU, Varanasi, for facilities.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chowdhury, S., Lata, R., Kharwar, R.N., Gond, S.K. (2019). Microbial Endophytes of Maize Seeds and Their Application in Crop Improvements. In: Verma, S., White, Jr, J. (eds) Seed Endophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-10504-4_21

Download citation

Publish with us

Policies and ethics