Skip to main content

Agriculturally Important Biosynthetic Features of Endophytic Microorganisms

  • Chapter
  • First Online:

Abstract

Endophytic microorganisms mainly include bacteria and fungi that colonize the plant internally without causing any adverse effect. Due to the mutualistic association with microorganisms accommodated internally, plants are benefited significantly in growth and resistance against various pathogens. The multiple plant-beneficial functions of endophytes like plant growth promotion, biocontrol and alleviation of abiotic stress are mediated through the production of diverse biomolecules. Hence there are immense possibilities to explore endophytes for various agricultural applications to substitute the use of agrochemicals. Endophytology with concepts of holobiome (plant and endophytes) and hologenome (genome of plant and endophytes) is gaining acceptance in recent years, both in basic and applied sciences. The current chapter describes biosynthetic features of endophytes especially those from seed endophytes, which are least investigated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anisha C, Radhakrishnan EK (2015) Gliotoxin-producing endophytic Acremonium sp. from Zingiber officinale found antagonistic to soft rot pathogen Pythium myriotylum. Appl Biochem Biotechnol 175(7):3458–3467

    Article  CAS  PubMed  Google Scholar 

  • Anisha C, Radhakrishnan EK (2017) Metabolite analysis of endophytic fungi from cultivars of Zingiber officinale Rosc identifies myriad of bioactive compounds including tyrosol. 3 Biotech 7(2):146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anisha C, Sachidanandan P, Radhakrishnan EK (2018a) Endophytic Paraconiothyrium sp. from Zingiber officinale Rosc. displays broad-spectrum antimicrobial activity by production of danthron. Curr Microbiol 75(3):343–352

    Article  CAS  PubMed  Google Scholar 

  • Anisha C, Jishma P, Sasi Bilzamol V, Radhakrishnan EK (2018b) Effect of ginger endophyte Rhizopycnis vagum on rhizome bud formation and protection from phytopathogens. Biocatal Agric Biotechnol 14:116–119

    Article  Google Scholar 

  • Aranda FJ, Teruel JA, Ortiz A (2005) Further aspects on the hemolytic activity of the antibiotic lipopeptide iturin A. Biochim Biophys Acta Biomembr 1713(1):51–56

    Article  CAS  Google Scholar 

  • Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptide lipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31(3):488–494

    Article  CAS  PubMed  Google Scholar 

  • Aswathy AJ, Jasim B, Jyothis M, Radhakrishnan EK (2013) Identification of two strains of Paenibacillus sp. as indole 3 acetic acid-producing rhizome-associated endophytic bacteria from Curcuma longa. 3 Biotech 3(3):219–224

    Article  PubMed  Google Scholar 

  • Bernabeu PR, Pistorio M, Torres-tejerizo G, Santos PEL, Galar ML, Boiardi JL et al (2015) Colonization and plant growth-promotion of tomato by Burkholderia tropica. Sci Hortic (Amsterdam) 191:113–120. https://doi.org/10.1016/j.scienta.2015.05.014

    Article  Google Scholar 

  • Bhardwaj A, Agrawal P (2014) A review fungal endophytes: as a store house of bioactive compound. World J Pharm Pharm Sci 3:228–237

    Google Scholar 

  • Bohm M, Hurek T, Reinhold-Hurek B (2007) Twitching motility is essential for endophytic rice colonization by the N2-fixing endophyte Azoarcus sp. strain BH72. Mol Plant-Microbe Interact 20:526–533

    Article  PubMed  CAS  Google Scholar 

  • Brader G, Compant S, Vescio K, Mitter B, Trognitz F, Ma L-J et al (2017) Ecology and genomic insights into plant-pathogenic and plant-non pathogenic endophytes. Annu Rev Phytopathol 55:61–83. https://doi.org/10.1146/annurev-phyto-080516-035641

    Article  CAS  PubMed  Google Scholar 

  • Chee-Sanford JC, Williams MM, Davis AS, Sims GK (2006) Do microorganisms influence seed-bank dynamics. Weed Sci 54:575–587. https://doi.org/10.1614/WS-05-055R.1

    Article  CAS  Google Scholar 

  • Chen C, Bauske EM, Musson G, Rodriguezkabana R, Kloepper JW (1995) Biological control of fusarium wilt on cotton by use of endophytic bacteria. Biol Control 5:83–91. https://doi.org/10.1006/bcon.1995.1009

    Article  Google Scholar 

  • Chi F, Shen S, Cheng H, Jing Y, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth. Physiology 71(11):7271–7278. https://doi.org/10.1128/AEM.71.11.7271

    Article  CAS  Google Scholar 

  • Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H, Sa T (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37(10):1970–1974

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005a) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compant S, Reiter B, Nowak J, Sessitsch A, Clément C, Barka EA (2005b) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Compant S, Mitter B, Colli-Mull JG, Gangl H, Sessitsch A (2011) Endophytes of grapevine flowers, berries and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62:188–197

    Article  PubMed  Google Scholar 

  • Cope-Selby N, Cookson A, Squance M, Donnison I, Flavell R, Farrar K (2017) Endophytic bacteria in Miscanthus seed: implications for germination, vertical inheritance of endophytes, plant evolution and breeding. GCB Bioeng 9:57–77. https://doi.org/10.1111/gcbb.12364

    Article  CAS  Google Scholar 

  • Coutinho BG, Licastro D, Mendonça-Previato L, Camara M, Venturi V (2014) Plant-influenced gene expression in the rice endophyte Burkholderia kururiensis M130. Mol Plant-Microbe Interact 28:10–21. https://doi.org/10.1094/MPMI-07-14-0225-R

    Article  CAS  Google Scholar 

  • Das S, Dey P, Roy D et al (2018) N-acetyl-D-glucosamine production by a chitinase of marine fungal origin : a case study of potential industrial significance for valorization of waste chitins. Appl Biochem Biotechnol 187(1):407–423

    Google Scholar 

  • De Bary A (1866) Morphologie und Physiologie Pilze, Flechten, und myxomyceten. In: Hofmeister’s handbook of physiological botany, vol 2. Verlag Von Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Debois D, Ongena M, Cawoy H, De Pauw E (2013) MALDI-FTICR MS imaging as a powerful tool to identify Paenibacillus antibiotics involved in the inhibition of plant pathogens. J Am Soc Mass Spectrom 24(8):1202–1213

    Article  CAS  PubMed  Google Scholar 

  • Deng Q, Wang W, Sun L, Wang Y, Liao J, Xu D, Liu Y, Ye R, Gooneratne R (2017) A sensitive method for simultaneous quantitative determination of surfactin and iturin by LC-MS/MS. Anal Bioanal Chem 409(1):179–191

    Article  CAS  PubMed  Google Scholar 

  • Dimkić I, Stanković S, Nišavić M, Petković M, Ristivojević P, Fira D, Berić T (2017) The profile and antimicrobial activity of Bacillus lipopeptide extracts of five potential biocontrol strains. Front Microbiol 8:925

    Article  PubMed  PubMed Central  Google Scholar 

  • Dovana F, Mucciarelli M, Mascarello M, Fusconi A (2015) In vitro morphogenesis of Arabidopsis to search for novel endophytic fungi modulating plant growth. PLoS One 10(12):e0143353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dubos RJ (1939) Studies on a bactericidal agent extracted from a soil Bacillus: I. Preparation of the agent. Its activity in vitro. J Exp Med 70(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher PJ, Petrini O, Lappin-Scott HM (1992) The distribution of some fungal and bacteria endophytes in maize (Zea mays L.). New Phytol 122:299–305

    Article  PubMed  Google Scholar 

  • Fouts DE, Tyler HL, DeBoy RT, Daugherty S, Ren Q, Badger JH, Durkin AS, Huot H, Shrivastava S, Kothari S, Dodson RJ, Mohamoud Y, Khouri H, Roesch LFW, Krogfelt KA, Struve C, Triplett EW, Methé BA (2008) Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genet 4(7):1–18

    Article  CAS  Google Scholar 

  • Frikha-Gargouri O, Ben Abdallah D, Ghorbel I, Charfeddine I, Jlaiel L, Triki MA, Tounsi S (2017) Lipopeptides from a novel Bacillus methylotrophicus 39b strain suppress agrobacterium crown gall tumours on tomato plants. Pest Manag Sci 73(3):568–574

    Article  CAS  PubMed  Google Scholar 

  • Gagne-Bourgue F, Aliferis KA, Seguin P, Rani M, Samson R, Jabaji S (2013) Isolation and characterization of indigenous endophytic bacteria associated with leaves of switchgrass (Panicum virgatum L.) cultivars. J Appl Microbiol 114:836–853. https://doi.org/10.1111/jam.12088

    Article  CAS  PubMed  Google Scholar 

  • Garg N, Geetanjali (2007) Symbiotic nitrogen fixation in legume nodules: process and signalling. A review. Agron Sustain Dev 27:59–68

    Article  CAS  Google Scholar 

  • Gazis R, Chaverri P (2010) Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol 3:240–254. https://doi.org/10.1016/j.funeco.2009.12.001

    Article  Google Scholar 

  • Geisen S, Kostenko O, Cnossen MC, ten Hooven FC, Vres B, van der Putten WH (2017) Seed and root endophytic fungi in a range expanding and a related plant species. Front Microbiol 8:1645

    Article  PubMed  PubMed Central  Google Scholar 

  • Ginting RCB, Sukarno N, Widyastuti U et al (2013) Diversity of endophytic fungi from red ginger (Zingiber officinale Rosc.) plant and their inhibitory effect to Fusarium oxysporum plant pathogenic fungi. HAYATI J Biosci 20:127–137. https://doi.org/10.4308/hjb.20.3.127

    Article  Google Scholar 

  • Godstime OC, Enwa FO, Augustina JO, Christopher EO (2014) Mechanisms of antimicrobial actions of phytochemicals against enteric pathogens–a review. J Pharm Chem Biol Sci 2:77–85

    Google Scholar 

  • Golinska P, Wypij M, Agarkar G, Rathod D, Dahm H, Rai M (2015) Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Antonie Van Leeuwenhoek 108:267–289. https://doi.org/10.1007/s10482-015-0502-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Gond SK, Bergen MS, Torres MS, White JF Jr (2015) Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res 172:79–87

    Article  CAS  PubMed  Google Scholar 

  • Gouda S, Das G, Sen SK, Shin H-S, Patra JK (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol 7:1538

    Article  PubMed  PubMed Central  Google Scholar 

  • Govindarajan M, Balandreau J, Kwon S-W, Weon H-Y, Lakshminarasimhan C (2008) Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55:21–37. https://doi.org/10.1007/s00248-007-9247-9

    Article  PubMed  Google Scholar 

  • Gu Q, Yang Y, Yuan Q, Shi G, Wu L, Lou Z, Huo R, Wu H, Borriss R, Gao X (2017) Bacillomycin D produced by Bacillus amyloliquefaciens is involved in the antagonistic interaction with the plant pathogenic fungus Fusarium graminearum. Appl Environ Microbiol 83:AEM-01075

    Article  Google Scholar 

  • Hallmann J (2001) Plant interactions with endophytic bacteria. In: Jeger MJ, Spence NJ (eds) Biotic interactions in plant–pathogen associations. CABI, Wallingford, pp 87–119

    Chapter  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43(10):895–914. https://doi.org/10.1139/m97-131

    Article  CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, Elsa v (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, Hardoim CC, Van Overbeek LS, Van Elsas JD (2012) Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One 7(2):e30438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan SE-D (2017) Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. J Adv Res 8(6):687–695. https://doi.org/10.1016/j.jare.2017.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera SD, Grossi C, Zawoznik M, Groppa MD (2016) Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum. Microbiol Res 186–187:37–43. https://doi.org/10.1016/j.micres.2016.03.002

    Article  CAS  Google Scholar 

  • Hodgson S, de Cates C, Hodgson J, Morley NJ, Sutton BC, Gange AC (2014) Vertical transmission of fungal endophytes is widespread in forbs. Ecol Evol 4:1199–1208. https://doi.org/10.1002/ece3.953

    Article  PubMed  PubMed Central  Google Scholar 

  • Hollants J, Leroux O, Leliaert F, Decleyre H, De Clerck O, Willems A (2011) Who is in there? Exploration of endophytic bacteria with in the siphonous green seaweed Bryopsis (Bryopsidales, Chlorophyta). PLoS One 6:e26458. https://doi.org/10.1371/journal.pone.0026458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong SH, Song YS, Seo DJ, Kim KY, Jung WJ (2017) Antifungal activity and expression patterns of extracellular chitinase and β-1, 3-glucanase in Wickerhamomyces anomalus EG2 treated with chitin and glucan. Microb Pathog 110:159–164

    Article  CAS  PubMed  Google Scholar 

  • Hsieh FC, Lin TC, Meng M, Kao SS (2008) Comparing methods for identifying Bacillus strains capable of producing the antifungal lipopeptide iturin A. Curr Microbiol 56(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Roberts DP, Maul JE et al (2011) Formulations of the endophytic bacterium Bacillus subtilis Tu-100 suppress Sclerotinia sclerotiorum on oilseed rape and improve plant vigor in field trials conducted at separate locations. Can J Microbiol 57:539–546

    Article  CAS  PubMed  Google Scholar 

  • Hubbard M, Germida JJ, Vujanovic V (2014) Fungal endophytes enhance wheat heat and drought tolerance in terms of grain yield and second-generation seed viability. J Appl Microbiol 116:109–122

    Article  CAS  PubMed  Google Scholar 

  • Hurek T, Handley LL, Reinhold-Hurek B et al (2002) Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol Plant-Microbe Interact 15(3):233–242

    Article  CAS  PubMed  Google Scholar 

  • Jain P, Pundir RK (2017) Potential role of endophytes in sustainable agriculture-recent developments and future prospects. In: Maheshwari D (ed) Endophytes: biology and biotechnology. Sustainable development and biodiversity, vol 15. Springer, Cham

    Google Scholar 

  • Jalgaonwala RE, Mohite BV, Mahajan RT (2011) Natural products from plant associated endophytic fungi. J Microbiol Biotechnol Res 1:21–32

    Google Scholar 

  • Jallow MFA, Dugassa-Gobena D, Vidal S (2004) Indirect interaction between an unspecialised endophytic fungus and a polyphagous moth. Basic Appl Ecol 5:183–191

    Article  Google Scholar 

  • Jasim B, Anisha C, Rohini S, Kurian JM, Jyothis M, Radhakrishnan EK (2014a) Phenazine carboxylic acid production and rhizome protective effect of endophytic Pseudomonas aeruginosa isolated from Zingiber officinale. World J Microbiol Biotechnol 30(5):1649–1654

    Article  CAS  PubMed  Google Scholar 

  • Jasim B, Joseph AA, John CJ, Mathew J, Radhakrishnan EK (2014b) Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. 3 Biotech 4(2):197–204

    Article  CAS  PubMed  Google Scholar 

  • Jasim B, Anish MC, Shimil V, Jyothis M, Radhakrishnan EK (2015) Studies on plant growth promoting properties of fruit-associated bacteria from Elettaria cardamomum and molecular analysis of ACC deaminase gene. Appl Biochem Biotechnol 177(1):175–189. https://doi.org/10.1007/s12010-015-1736-6

    Article  CAS  PubMed  Google Scholar 

  • Jasim B, Mathew J, Radhakrishnan EK (2016a) Identification of a novel endophytic Bacillus sp. from Capsicum annuum with highly efficient and broad spectrum plant probiotic effect. J Appl Microbiol 121(4):1079–1094. https://doi.org/10.1111/jam.13214

    Article  CAS  PubMed  Google Scholar 

  • Jasim B, Sreelakshmi KS, Mathew J, Radhakrishnan EK (2016b) Surfactin, iturin, and fengycin biosynthesis by endophytic Bacillus sp. from Bacopa monnieri. Microb Ecol 72(1):106–119

    Article  CAS  PubMed  Google Scholar 

  • Jemil N, Manresa A, Rabanal F, Ayed HB, Hmidet N, Nasri M (2017) Structural characterization and identification of cyclic lipopeptides produced by Bacillus methylotrophicus DCS1 strain. J Chromatogr B 1060:374–386

    Article  CAS  Google Scholar 

  • Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B (2000) Direct interaction of resistance gene and a virulence gene products confers rice blast resistance. EMBO J 19(15):4004–4014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joseph B, Priya M (2011) Review on nutritional, medicinal and pharmacological properties of guava (Psidium guajava Linn.). Int J Pharm Biol Sci 2(1):53–69

    Google Scholar 

  • Kaga H, Mano H, Tanaka F, Watanabe A, Kaneko S, Morisaki H (2009) Rice seeds as sources of endophytic bacteria. Microbes Environ 24:154–162

    Article  PubMed  Google Scholar 

  • Khalaf EM, Raizada MN (2018) Bacterial seed endophytes of domesticated cucurbits antagonize fungal and oomycete pathogens including powdery mildew. Front Microbiol 9(FEB):1–18. https://doi.org/10.3389/fmicb.2018.00042.

    Article  Google Scholar 

  • Khamchatra N, Dixon K, Chayamarit K, Apisitwanich S, Tantiwiwat S (2016) Using in situ seed baiting technique to isolate and identify endophytic and mycorrhizal fungi from seeds of a threatened epiphytic orchid, Dendrobium friedericksianum Rchb.f. (Orchidaceae). Agric Nat Resour 50:8–13. https://doi.org/10.1016/j.anres.2016.01.002

    Article  Google Scholar 

  • Khan AR, Ullah I, Waqas M, Shahzad R, Hong SJ, Park GS, Jung BK, Lee IJ, Shin JH (2015) Plant growth-promoting potential of endophytic fungi isolated from Solanum nigrum leaves. World J Microbiol Biotechnol 31(9):1461–1466

    Article  CAS  PubMed  Google Scholar 

  • Khan Z, Rho H, Firrincieli A, Hung SH, Luna V, Masciarelli O, Kim SH, Doty SL (2016) Growth enhancement and drought tolerance of hybrid poplar upon inoculation with endophyte consortia. Curr Plant Biol 6:38–47

    Article  Google Scholar 

  • Klaedtke S, Jacques M-A, Raggi L et al (2015) Terroir is a key driver of seed-associated microbial assemblages. Environ Microbiol 18(6):1792–1804

    Article  PubMed  CAS  Google Scholar 

  • Kloepper JW, Ryu C-M (2006) Bacterial endophytes as elicitors of induced systemic resistance. In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 33–52

    Chapter  Google Scholar 

  • Krause A, Ramakumar A, Bartels D, Battistoni F, Bekel T, Boch J, Böhm M, Friedrich F, Hurek T, Krause L, Linke B (2006) Complete genome of the mutualistic, N2-fixing grass endophyte Azoarcus sp. strain BH72. Nat Biotechnol 24(11):1

    Article  CAS  Google Scholar 

  • Krishnan P, Bhat R, Kush A, Ravikumar P (2012) Isolation and functional characterization of bacterial endophytes from Carica papaya fruits. J Appl Microbiol 113(2):308–317

    Article  CAS  PubMed  Google Scholar 

  • Krolicka M, Hinz SW, Koetsier MJ, Joosten R, Eggink G, van den Broek LA, Boeriu CG (2018) Chitinase Chi1 from Myceliophthora thermophila C1, a thermostable enzyme for chitin and chitosan depolymerization. J Agric Food Chem 66(7):1658–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwak JY, Song SY, Kim H, Jeong SG, Kang BK, Kim SK, Kwon CH, Lee DSY, Park SH, Kim JF (2012) Complete genome sequence of the endophytic bacterium Burkholderia sp. strain KJ006. J Bacteriol 194:4432–4433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larran S, Simon MR, Moreno MV, Siurana MPS, Perell A (2016) Endophytes from wheat as biocontrol agents against tan spot disease. Biol Control 92:17–23

    Article  Google Scholar 

  • Li JY, Strobel G, Harper J, Lobkovsky E, Clardy J (2000) Cryptocin, a potent tetramic acid antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Org Lett 2(6):767–770

    Article  PubMed  CAS  Google Scholar 

  • Li JY, Harper JK, Grant DM, Tombe BO, Bashyal B, Hess WM, Strobel GA (2001) Ambuic acid, a highly functionalized cyclohexenone with antifungal activity from Pestalotiopsis spp. and Monochaetia sp. Phytochemistry 56(5):463–468

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zuo S, Zou Y, Wang J, Song W (2013) Investigation on diversity and population succession dynamics of endophytic bacteria from seeds of maize (Zea mays L., Nongda108) at different growth stages. Ann Microbiol 63:71–79. https://doi.org/10.1007/s13213-012-0446-3

    Article  Google Scholar 

  • Liu J, Nagabhyru P, Schardl CL (2017) Epichloë festucae endophytic growth in florets, seeds, and seedlings of perennial ryegrass (Lolium perenne). Mycologia 109(5):691–700. https://doi.org/10.1080/00275514.2017.1400305

    Article  PubMed  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M, Van Der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606

    Article  Google Scholar 

  • López-López A, Rogel MA, Ormeño-Orrillo E, Martínez-Romero J, Martínez-Romero E (2010) Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov. Syst Appl Microbiol 33:322–327. https://doi.org/10.1016/j.syapm.2010.07.005

    Article  PubMed  Google Scholar 

  • Maehara S, Agusta A, Kitamura C, Ohashi K, Shibuya H (2016) Composition of the endophytic filamentous fungi associated with Cinchona ledgeriana seeds and production of cinchona alkaloids. J Nat Med 70:271–275. https://doi.org/10.1007/s11418-015-0954-0

    Article  CAS  PubMed  Google Scholar 

  • Makovitzki A, Avrahami D, Shai Y (2006) Ultrashort antibacterial and antifungal lipopeptides. Proc Natl Acad Sci 103(43):15997–16002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malfanova N, Lugtenberg BJJ, Berg G (2013) Bacterial endophytes: who and where, and what are they doing there. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley-Blackwell, Hoboken, NJ, pp 391–403

    Chapter  Google Scholar 

  • Mano Y, Nemoto K (2012) The pathway of auxin biosynthesis in plants. J Exp Bot 63(8):2853–2872

    Article  CAS  PubMed  Google Scholar 

  • Mano H, Tanaka F, Watanabe A, Kaga H, Okunishi S, Morisaki H (2006) Culturable surface and endophytic bacterial flora of the maturing seeds of rice plants (Oryza sativa) cultivated in a paddy field. Microbes Environ 21:86–100. https://doi.org/10.1264/jsme2.21.86

    Article  Google Scholar 

  • Mastretta C, Taghavi S, van der Lelie D, Mengoni A, Galardi F, Gonnelli C et al (2009) Endophytic bacteria from seeds of Nicotiana Tabacum can reduce cadmium phytotoxicity. Int J Phytoremed 11:251–267. https://doi.org/10.1080/15226510802432678

    Article  CAS  Google Scholar 

  • Mattos KA, Pádua VLM, Romeiro A, Hallack LF, Neves BC, Ulisses TMU et al (2008) Endophytic colonization of rice (Oryza sativa L.) by the diazotrophic bacterium Burkholderia kururiensis and its ability to enhance plant growth. An Acad Bras Cienc 80:477–493. https://doi.org/10.1590/S0001-37652008000300009

    Article  CAS  PubMed  Google Scholar 

  • Meena KR, Kanwar SS (2015) Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. Biomed Res Int 2015:1

    Google Scholar 

  • Miller JT, Dong F, Jackson SA, Song J, Jiang J (1998) Retrotransposon-related DNA sequences in the centromeres of grass chromosomes. Genetics 150(4):1615–1623

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mnif I, Grau-Campistany A, Coronel-León J, Hammami I, Triki MA, Manresa A, Ghribi D (2016) Purification and identification of Bacillus subtilis SPB1 lipopeptide biosurfactant exhibiting antifungal activity against Rhizoctonia bataticola and Rhizoctonia solani. Environ Sci Pollut Res 23(7):6690–6699

    Article  CAS  Google Scholar 

  • Moyne AL, Cleveland TE, Tuzun S (2004) Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. FEMS Microbiol Lett 234(1):43–49

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay K, Garrison NK, Hinton DM, Bacon CW, Khush GS, Peck HD, Datta N (1996) Identification and characterization of bacterial endophytes of rice. Mycopathologia 134(3):151–159

    Article  CAS  PubMed  Google Scholar 

  • Newcombe G, Shipunov A, Eigenbrode S, Raghavendra AK, Ding H, Anderson CL, Schwarzländer M (2009) Endophytes influence protection and growth of an invasive plant. Commun Integr Biol 2(1):29–31

    Article  PubMed  PubMed Central  Google Scholar 

  • Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190:783–793

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125. https://doi.org/10.1016/j.tim.2007.12.009

    Article  CAS  PubMed  Google Scholar 

  • Onja Andriambeloson H (2016) Biological potentials of ginger associated Streptomyces compared with ginger essential oil. Am J Life Sci 4:152

    Article  Google Scholar 

  • Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745

    Article  PubMed  PubMed Central  Google Scholar 

  • Pageni BB, Lupwayi NZ, Akter Z, Larney FJ, Kawchuk LM, Gan Y (2014) Plant growth-promoting and phytopathogen-antagonistic properties of bacterial endophytes from potato (Solanum tuberosum L.) cropping systems. Can J Plant Sci 94(5):835–844

    Article  Google Scholar 

  • Pandya M, Rajput M, Rajkumar S (2015) Exploring plant growth promoting potential of non rhizobial root nodules endophytes of Vigna radiata. Microbiology 84:80–89. https://doi.org/10.1134/S0026261715010105

    Article  CAS  Google Scholar 

  • Parsa S, García-Lemos AM, Castillo K et al (2016) Fungal endophytes in germinated seeds of the common bean, Phaseolus vulgaris. Fungal Biol 120:783–790. https://doi.org/10.1016/j.funbio.2016.01.017

    Article  PubMed  PubMed Central  Google Scholar 

  • Paungfoo-Lonhienne C, Rentsch D, Robatzek S, Webb RI, Sagulenko E, Näsholm T, Schmidt S, Lonhienne TGA (2010) Turning the table: plants consume microbes as a source of nutrients. PLoS One 5:e11915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paungfoo-Lonhienne C, Schmidt S, Webb RI (2013) Interactions, P.M. Rhizophagy—a new dimension of plant—microbe interactions. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere, vol 2. Wiley-Blackwell, Hoboken, NJ, pp 1201–1207

    Google Scholar 

  • Paungfoo-Lonhienne C, Lonhienne TGA, Yeoh YK, Webb RI, Lakshmanan P, Chan CX et al (2014) A new species of Burkholderia isolated from sugarcane roots promotes plant growth. Microb Biotechnol 7:142–154. https://doi.org/10.1111/1751-7915.12105

    Article  CAS  PubMed  Google Scholar 

  • Pimentel MR, Molina G, Dionisio AP, Maróstica MR, Pastore GM (2011) Use of endophytes to obtain bioactive compounds and their application in biotransformation process. Bio Technol Res Int 576286:2011. https://doi.org/10.4061/2011/576286

    Article  CAS  Google Scholar 

  • Pitzschke A (2018) Molecular dynamics in germinating, endophyte-colonized quinoa seeds. Plant Soil 422(1–2):135–154. https://doi.org/10.1007/s11104-017-3184-2.

    Article  CAS  PubMed  Google Scholar 

  • Prieto P, Schilirò E, Maldonado-González MM, Valderrama R, Barroso-Albarracín JB, Mercado-Blanco J (2011) Root hairs play a key role in the endophytic colonization of olive roots by Pseudomonas spp. with biocontrol activity. Microb Ecol 62:435–445

    Article  PubMed  PubMed Central  Google Scholar 

  • Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68(12):1717–1719

    Article  CAS  PubMed  Google Scholar 

  • Rajamanikyam M, Vadlapudi V, Amanchy R, Upadhyayula SM (2017) Endophytic fungi as novel resources of natural therapeutics. Braz Arch Biol Technol 60:e17160542

    Article  CAS  Google Scholar 

  • Rohini S, Aswani R, Kannan M et al (2018) Culturable endophytic bacteria of ginger rhizome and their remarkable multi-trait plant growth-promoting features. Curr Microbiol 75:505. https://doi.org/10.1007/s00284-017-1410-z

    Article  CAS  PubMed  Google Scholar 

  • Romano A, Vitullo D, Di Pietro A, Lima G, Lanzotti V (2011) Antifungal lipopeptides from Bacillus amyloliquefaciens strain BO7. J Nat Prod 74(2):145–151

    Article  CAS  PubMed  Google Scholar 

  • Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Pérez-García A (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant-Microbe Interact 20(4):430–440

    Article  CAS  PubMed  Google Scholar 

  • Roongsawang N, Washio K, Morikawa M (2010) Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. Int J Mol Sci 12(1):141–172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rozpadek P, Wezowicz K, Nosek M, Wazny R, Tokarz K, Lembicz M et al (2015) The fungal endophyte Epichloë typhina improves photosynthesis efficiency of its host orchard grass (Dactylis glomerata). Planta 242:1025–1035. https://doi.org/10.1007/s00425-015-2337-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz D, Agaras B, Werra P, Wall LG, Valverde C (2011) Characterization and screening of plant probiotic traits of bacteria isolated from rice seeds cultivated in Argentina. J Microbiol 49:902–912

    Article  PubMed  CAS  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  CAS  PubMed  Google Scholar 

  • Rybakova D, Cernava T, Köberl M, Liebminger S, Etemadi M, Berg G (2016) Endophytes-assisted biocontrol: novel insights in ecology and the mode of action of Paenibacillus. Plant Soil 405:125–140. https://doi.org/10.1007/s11104-015-2526-1

    Article  CAS  Google Scholar 

  • Sabu R, Aswani R, Jishma P, Jasim B, Mathew J, Radhakrishnan EK (2017a) Plant growth promoting endophytic Serratia sp. ZoB14 protecting ginger from fungal pathogens. Proc Natl Acad Sci India Sect B Biol Sci 7:1–8

    Google Scholar 

  • Sabu R, Soumya KR, Radhakrishnan EK (2017b) Endophytic Nocardiopsis sp. from Zingiber officinale with both antiphytopathogenic mechanisms and antibiofilm activity against clinical isolates. 3 Biotech 7(115):115. https://doi.org/10.1007/s13205-017-0735-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Saikkonen K, Wäli P, Helander M, Faeth SH (2004) Evolution of endophyte–plant symbioses. Trends Plant Sci 9:275–280. https://doi.org/10.1016/j.tplants.2004.04.005

    Article  CAS  PubMed  Google Scholar 

  • Saini R, Dudeja SS, Giri R, Kumar V (2015) Isolation, characterization, and evaluation of bacterial root and nodule endophytes from chickpea cultivated in northern India. J Basic Microbiol 55:74–81. https://doi.org/10.1002/jobm.201300173

    Article  CAS  PubMed  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34(10):635–648

    Article  CAS  PubMed  Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    Article  CAS  PubMed  Google Scholar 

  • Scott MMR, Samsatly J, Charron J-B, Jabaji S (2018) Endophytes of industrial hemp (Cannabis sativa L.) cultivars: identification of culturable bacteria and fungi in leaves, petioles, and seeds. Can J Microbiol 64:1–17. https://doi.org/10.1139/cjm-2018-0108

    Article  CAS  Google Scholar 

  • Shade A, Jacques M-A, Barret M (2017) Ecological patterns of seed microbiome diversity, transmission, and assembly. Curr Opin Microbiol 37:15–22. https://doi.org/10.1016/j.mib.2017.03.010

    Article  PubMed  Google Scholar 

  • Shahzad R, Waqas M, Khan AL, Asaf S, Khan MA, Kang S-M, Yun B-W, Lee I-J (2016) Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiol Biochem 106:236–243. https://doi.org/10.1016/j.plaphy.2016.05.006

    Article  CAS  PubMed  Google Scholar 

  • Shahzad R, Khan AL, Bilal S, Asaf S, Lee I-J (2017) Plant growth-promoting endophytic bacteria versus pathogenic infections: an example of Bacillus amyloliquefaciens RWL-1 and Fusarium oxysporum f. sp. lycopersici in tomato. Peer J 5:e3107. https://doi.org/10.7717/peerj.3107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shearin ZRC, Filipek M, Desai R, Bickford WA, Kowalski KP, Clay K (2017) Fungal endophytes from seeds of invasive, non-native Phragmites australis and their potential role in germination and seedling growth. Plant Soil 2017:1–12. https://doi.org/10.1007/s11104-017-3241-x

    Article  CAS  Google Scholar 

  • Shen XY, Cheng YL, Cai CJ, Fan L, Gao J, Hou CL (2014) Diversity and antimicrobial activity of culturable endophytic fungi isolated from moso bamboo seeds. PLoS One 9(4):e95838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi J, Liu A, Li X et al (2010) Identification of endophytic bacterial strain MGP1 selected from papaya and its biocontrol effects on pathogens infecting harvested papaya fruit. J Sci Food Agric 90:227–232

    Article  CAS  PubMed  Google Scholar 

  • Sicuia OA, Grosu I, Constantinescu F, Voaides C, Cornea CP (2015) Enzymatic and genetic variability in Bacillus spp. strains with plant beneficial qualities. AgroLife Sci J 4:124–131

    Google Scholar 

  • Singh R, Dubey AK (2015) Endophytic actinomycetes as emerging source for therapeutic compounds. Indo Global J Pharm Sci 5:106–116

    CAS  Google Scholar 

  • Smith SA, Tank DC, Boulanger L-A, Bascom-Slack CA, Eisenman K, Kingery D et al (2008) Bioactive endophytes warrant intensified exploration and conservation. PLoS One 3:e3052. https://doi.org/10.1371/journal.pone.0003052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67(4):491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strobel GA, Miller RV, Martinez-Miller C, Condron MM, Teplow DB, Hess WM (1999) Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 145(8):1919–1926

    Article  CAS  PubMed  Google Scholar 

  • Sun H, He Y, Xiao Q, Ye R, Tian Y (2013) Isolation, characterization, and antimicrobial activity of endophytic bacteria from Polygonum cuspidatum. Afr J Microbiol Res 7:1496–1504. https://doi.org/10.5897/AJMR12.899

    Article  CAS  Google Scholar 

  • Sun B-T, Senyo Akutse K, Xia X-F et al (2018) Endophytic effects of Aspergillus oryzae on radish (Raphanus sativus) and its herbivore, Plutella xylostella. Planta 1(3):705. https://doi.org/10.1007/s00425-018-2928-4

    Article  CAS  Google Scholar 

  • Sundaramoorthy S, Balabaska P (2013) Evaluation of combined efficacy of Pseudomonas fluorescens and Bacillus subtilis in managing tomato wilt caused by Fusarium oxysporum f. Sp. lycopersici (Fol). Plant Pathol J 12:154–161

    Article  CAS  Google Scholar 

  • Taechowisan T, Lu C, Shen Y, Lumyong S (2005) Secondary metabolites from endophytic Streptomyces aureofaciens CMUAc130 and their antifungal activity. Microbiology 151(5):1691–1695

    Article  CAS  PubMed  Google Scholar 

  • Taechowisan T, Chanaphat S, Ruensamran W, Phutdhawong WS (2013) Antibacterial activity of Decursin from Streptomyces sp. GMT-8; an endophyte in Zingiber officinale Rosc. J Appl Pharm Sci 3:74–78. https://doi.org/10.7324/JAPS.2013.31012

    Article  CAS  Google Scholar 

  • Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, van der Lelie D (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75(3):748–757

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Amaki Y, Ishihara A, Nakajima H (2015) Synergistic effects of [Ile7] surfactin homologues with bacillomycin D in suppression of gray mold disease by Bacillus amyloliquefaciens biocontrol strain SD-32. J Agric Food Chem 63:5344–5353. https://doi.org/10.1021/acs.jafc.5b01198

    Article  CAS  PubMed  Google Scholar 

  • Tapi A, Chollet-Imbert M, Scherens B, Jacques P (2010) New approach for the detection of non-ribosomal peptide synthetase genes in Bacillus strains by polymerase chain reaction. Appl Microbiol Biotechnol 85(5):1521–1531

    Article  CAS  PubMed  Google Scholar 

  • Tayung K, Sarkar M, Baruah P (2012) Endophytic fungi occurring in Ipomoea carnea tissues and their antimicrobial potentials. Braz Arch Biol Tech 55:653–660

    Article  Google Scholar 

  • Toral L, Rodríguez M, Béjar V, Sampedro I (2018) Antifungal activity of lipopeptides from Bacillus XT1 CECT 8661 against Botrytis cinerea. Front Microbiol 9:1315

    Article  PubMed  PubMed Central  Google Scholar 

  • Truyens S, Weyens N, Cuypers A, Vangronsveld J (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep 7:40–50. https://doi.org/10.1111/1758-2229.12181

    Article  Google Scholar 

  • Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91(2):127–141

    Article  CAS  PubMed  Google Scholar 

  • Verma SK, Kingsley K, Bergen M et al (2018a) Bacterial endophytes from rice cut grass (Leersia oryzoides L.) increase growth, promote root gravitropic response, stimulate root hair formation, and protect rice seedlings from disease. Plant Soil 422(1–2):223–238. https://doi.org/10.1007/s11104-017-3339-1

    Article  CAS  Google Scholar 

  • Verma S, Kingsley K, Bergen M et al (2018b) Fungal disease prevention in seedlings of rice (Oryza sativa) and other grasses by growth-promoting seed-associated endophytic bacteria from invasive Phragmites australis. Microorganisms 6:21. https://doi.org/10.3390/microorganisms6010021

    Article  PubMed Central  Google Scholar 

  • Vincent D, Bedon F (2013) Secretomics of plant-fungus associations: more secrets to unravel. J Plant Biochem Physiol 1(5):1000e117. https://doi.org/10.4172/2329-9029.1000e117

    Article  Google Scholar 

  • Walitang DI, Kim K, Madhaiyan M et al (2017) Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of Rice. BMC Microbiol 17(1):209. https://doi.org/10.1186/s12866-017-1117-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Guo Q, Ma Y, Li S, Lu X, Zhang X, Ma P (2015) DegQ regulates the production of fengycins and biofilm formation of the biocontrol agent Bacillus subtilis NCD-2. Microbiol Res 178:42–50

    Article  CAS  PubMed  Google Scholar 

  • Wearn JA, Sutton BC, Morley NJ, Gange AC (2012) Species and organ specificity of fungal endophytes in herbaceous grassland plants. J Ecol 100:1085–1092

    Article  Google Scholar 

  • White JF, Torres MS, Somu MP, Johnson H, Irizarry I, Chen Q, Zhang N, Walsh E, Tadych M, Bergen M (2014) Hydrogen peroxide staining to visualize intracellular bacterial infections of seedling root cells. Microsc Res Tech 77:566–573

    Article  CAS  PubMed  Google Scholar 

  • White JF, Kingsley KI, Kowalski KP, Irizarry I, Micci A, Soares MA et al (2017) Disease protection and allelopathic interactions of seed-transmitted endophytic Pseudomonads of invasive reed grass (Phragmites australis). Plant Soil 422(1–2):195–208. https://doi.org/10.1007/s11104-016-3169-6

    Article  CAS  Google Scholar 

  • Wisniewski-Dyé K, Borziak G, Khalsa-Moyers G, Alexandre LO, Sukharnikov K, Wuichet GB, Hurst WH, McDonald JS, Robertson V, Barbe A, Calteau Z, Rouy S, Mangenot C, Prigent-Combaret P, Normand M, Boyer P, Siguier Y, Dessaux C, Elmerich G, Condemine G, Krishnen I, Kennedy AH, Paterson V, González P, Mavingui IB (2011) Zhulin Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genet 7:e1002430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu Z, Bañuelos GS, Lin ZQ, Liu Y, Yuan L, Yin X, Li M (2015) Biofortification and phytoremediation of selenium in China. Front Plant Sci 6:136

    PubMed  PubMed Central  Google Scholar 

  • Xu M, Sheng J, Chen L, Men Y, Gan L, Guo S et al (2014) Bacterial community compositions of tomato (Lycopersicum esculentum Mill.) seeds and plant growth promoting activity of ACC deaminase producing Bacillus subtilis (HYT-12-1) on tomato seedlings. World J Microbiol Biotechnol 30:835–845. https://doi.org/10.1007/s11274-013-1486-y

    Article  CAS  PubMed  Google Scholar 

  • Zarei M, Aminzadeh S, Zolgharnein H, Safahieh A, Daliri M, Noghabi KA, Ghoroghi A, Motallebi A (2011) Characterization of a chitinase with antifungal activity from a native Serratia marcescens B4A. Braz J Microbiol 42(3):1017–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao K, Penttinen P, Guan T, Xiao J, Chen Q, Xu J et al (2011) The diversity and anti-microbial activity of endophytic actinomycetes isolated from medicinal plants in Panxi Plateau China. Curr Microbiol 62(1):182–190

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Radhakrishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sreejith, S., Aswani, R., Radhakrishnan, E.K. (2019). Agriculturally Important Biosynthetic Features of Endophytic Microorganisms. In: Verma, S., White, Jr, J. (eds) Seed Endophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-10504-4_20

Download citation

Publish with us

Policies and ethics