Skip to main content

Endophytic Microbes: Prospects and Their Application in Abiotic Stress Management and Phytoremediation

Abstract

Environmental stresses such as drought, salinity, and heavy metals are the major limiting factors associated with plants, causing collectively more than 50% yield losses worldwide. These unavoidable stresses impair life-sustaining normal physiological and biochemical processes of plants by disrupting the plant-water relationships, generation of reactive oxygen species (ROS), and ion toxicity inside plant cells. Consequently, reduced photosynthetic activity, abrupt changes in vital physiological processes, and degradation of cellular biomolecules lead to reduced crop productivity. Past decade researches have indicated that the microbes play key role in abiotic stress management due to their ubiquitous nature, colonization activity, unique physiology, production of useful secondary metabolites (antimicrobial compounds, VOCs), and most importantly, their application in sustainable agriculture. Furthermore, present-day scientists consider the endophyte-plant partnerships to be more appealing and advantageous as compared to rhizospheric microbes because of their intimate association with host-cell environment that provide the plant’s ability to circumvent various biotic as well as abiotic stresses. Therefore, present chapter endeavors to review the dynamic role of endophytes in abiotic stress management and their possible application in environmental cleanup for sustainable environment development.

Keywords

  • Endophytes
  • Abiotic stress
  • Reactive oxygen species
  • Phytoremediation
  • Secondary metabolite
  • Bioaccumulation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-10504-4_15
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-10504-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 15.1

References

  • Abdelaziz ME, Kim D, Ali S, Fedoroff NV, Al-Babili S (2017) The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na+/K + homeostasis under salt stress conditions. Plant Sci 263:107–115

    CAS  PubMed  CrossRef  Google Scholar 

  • Afzal M, Yousaf S, Reichenauer TG, Kuffner M, Sessitsch A (2011) Soil type affects plant colonization, activity and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel. J Hazard Mater 186:1568–1575

    CAS  PubMed  CrossRef  Google Scholar 

  • Afzal M, Yousaf S, Reichenauer TG, Sessitsch A (2012) The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. Int J Phytoremediation 14:35–47

    PubMed  CrossRef  Google Scholar 

  • Andreolli M, Lampis S, Poli M, Gullner G, Biró B, Vallini G (2013) Endophytic Burkholderia fungorum DBT1 can improve phytoremediation efficiency of polycyclic aromatic hydrocarbons. Chemosphere 92:688–694

    CAS  PubMed  CrossRef  Google Scholar 

  • Andria V, Reichenauer TG, Sessitsch A (2009) Expression of alkane monooxygenase (alkB) genes by plant-associated bacteria in the rhizosphere and endosphere of Italian ryegrass (Lolium multiflorum L.) grown in diesel contaminated soil. Environ Pollut 157:3347–3350

    CAS  PubMed  CrossRef  Google Scholar 

  • Babu AG, Shea PJ, Sudhakar D, Jung IB, Oh BT (2015) Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil. J Environ Manag 151:160–166

    CAS  CrossRef  Google Scholar 

  • Bacon C, Hinton D (2006) Bacterial endophytes: the endophytic niche, its occupants, and its utility. In: Gnanamanickam S (ed) Plant-associated bacteria. Springer, Dordrecht, pp 155–194

    CrossRef  Google Scholar 

  • Bacon CW, White J (eds) (2000) Microbial endophytes. CRC Press, Boca Raton

    Google Scholar 

  • Bae H, Sicher RC, Kim M, Kim SH, Strem MD, Melnick RL, Bailey BA (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60(11):3279–3295

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bailey-Serres J, Voesenek LA (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    CAS  PubMed  Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, Van Der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583

    Google Scholar 

  • Barnawal D, Bharati N, Tripathi A, Pandey SS, Chanotiya CS, Kalra A (2016) ACC-Deaminase-producing endophyte Brachybacterium paraconglomeratum strain SMR20 ameliorates Chlorophytum salinity stress via altering phytohormone generation. J Plant Growth Regul 35:553–564

    CAS  CrossRef  Google Scholar 

  • Barzanti R, Ozino F, Bazzicalupo M, Gabbrielli R, Galardi F, Gonnelli C, Mengoni A (2007) Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microb Ecol 53:306–316

    CAS  PubMed  CrossRef  Google Scholar 

  • Bates BC, Kundzewicz ZW, Palutikof J, Wu S (2008) Climate change and water, technical paper of the intergovernmental panel on climate change 2008. IPCC Secretariat 210, Geneva

    Google Scholar 

  • Chen C, Xin K, Liu H, Cheng J, Shen X, Wang Y, Zhang L (2017) Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat. Sci Rep 7:41564

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Cocq KL, Gurr SJ, Hirsch PR, Mauchline TH (2017) Exploitation of endophytes for sustainable agricultural intensification. Mol Plant Pathol 18:469–473

    PubMed  CrossRef  Google Scholar 

  • Etesami H, Beattie GA (2017) Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions. In: Probiotics and plant health. Springer, Singapore, pp 163–200

    CrossRef  Google Scholar 

  • Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Mado LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194

    CAS  PubMed  CrossRef  Google Scholar 

  • Gagné-Bourque F, Mayer BF, Charron J-B, Vali H, Bertrand A, Jabaji S (2015) Accelerated growth rate and increased drought stress resilience of the model grass Brachypodium distachyon colonized by Bacillus subtilis B26. PLoS One 10(6):e0130456

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Gagné-Bourque F, Bertrand A, Claessens A, Aliferis KA, Jabaji S (2016) Alleviation of drought stress and metabolic changes in timothy (Phleum pratense L.) colonized with Bacillus subtilis B26. Front Plant Sci 7:584

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    CAS  CrossRef  Google Scholar 

  • Germaine KJ, Liu X, Cabellos GG, Hogan JP, Ryan D, Dowling DN (2006) Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2, 4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57:302–310

    CAS  PubMed  CrossRef  Google Scholar 

  • Germaine KJ, Keogh E, Ryan D, Dowling DN (2009) Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation. FEMS Microbiol Lett 296:226–234

    CAS  PubMed  CrossRef  Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils. Soil Biol Biochem 30:1389–1414

    CAS  CrossRef  Google Scholar 

  • Guo HJ, Luo SL, Chen L, Xiao X, Xi Q, Wei WZ, Zeng G, Liu C, Wan Y, Chen J, He Y (2010) Bioremediation of heavy metals by growing hyperaccumulator endophytic bacterium Bacillus sp. L14. Bioresour Technol 101:8599–6605

    CAS  PubMed  CrossRef  Google Scholar 

  • Guo H, Yao J, Cai M, Qian Y, Guo Y, Richnow HH, Blake RE, Doni S, Ceccanti B (2012) Effects of petroleum contamination on soil microbial numbers, metabolic activity and urease activity. Chemosphere 87:1273–1280

    CAS  PubMed  CrossRef  Google Scholar 

  • Hamilton CE, Bauerle TL (2012) A new currency for mutualism: Neotyphodium antioxidants and host drought response. Fungal Divers 54:39–49

    CrossRef  Google Scholar 

  • Hamilton CE, Gundel PE, Helander M, Saikkonen K (2012) Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Divers 54:1–10

    CrossRef  Google Scholar 

  • Hasegawa S, Meguro A, Nishimura T, Kunoh H (2004) Drought tolerance of tissue-cultured seedlings of mountain laurel (Kalmia latifolia L.) induced by an endophytic actinomycete I. Enhancement of osmotic pressure in leaf cells. Actinomycetologica 18(2):43–47

    CrossRef  Google Scholar 

  • Havelcová M, Melegy A, Rapant S (2014) Geochemical distribution of polycyclic aromatic hydrocarbons in soils and sediments of El-Tabbin, Egypt. Chemosphere 95:63–74

    PubMed  CrossRef  CAS  Google Scholar 

  • Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387

    CAS  PubMed  CrossRef  Google Scholar 

  • Ho YN, Mathew DC, Hsiao SC, Shih CH, Chien MF, Chiang HM, Huang CC (2012) Selection and application of endophytic bacterium Achromobacter xylosoxidans strain F3B for improving phytoremediation of phenolic pollutants. J Hazard Mater 219:43–49

    PubMed  CrossRef  CAS  Google Scholar 

  • Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Jaemsaeng R, Jantasuriyarat C, Thamchaipenet A (2018) Molecular interaction of 1-aminocyclopropane-1-carboxylate deaminase (ACCD)-producing endophytic Streptomyces sp. GMKU 336 towards salt-stress resistance of Oryza sativa L. cv. KDML105. Sci Rep 8:1950

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Jha Y, Subramanian RB (2011) Endophytic Pseudomonas pseudoalcaligenes shows better response against the Magnaporthe grisea than a rhizospheric Bacillus pumilus in Oryza sativa (Rice). Arch Phytopathol Plant Protect 44:592–604

    CrossRef  Google Scholar 

  • Jha Y, Subramanian RB, Patel S (2011) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33:797–802

    CrossRef  Google Scholar 

  • Jha Y, Subramanian RB (2016) Regulation of plant physiology and antioxidant enzymes for alleviating salinity stress by potassium-mobilizing bacteria. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 149–162

    CrossRef  Google Scholar 

  • Jogawat A, Saha S, Bakshi M, Dayaman V, Kumar M, Dua M, Varma A, Oelmüller R, Tuteja N, Johri AK (2013) Piriformospora indica rescues growth diminution of rice seedlings during high salt stress. Plant Signal Behav 8(10):e26891

    PubMed Central  CrossRef  CAS  Google Scholar 

  • Kamnev AA, Tugarova AV, Antonyuk LP, Tarantilis PA, Polissiou MG, Gardiner PH (2005) Effects of heavy metals on plant-associated rhizobacteria: comparison of endophytic and non-endophytic strains of Azospirillum brasilense. J Trace Elem Med Biol 9:91–95

    CrossRef  CAS  Google Scholar 

  • Kang JW, Khan Z, Doty SL (2012) Biodegradation of trichloroethylene by an endophyte of hybrid poplar. Appl Environ Microbiol 12:3504–3507

    CrossRef  CAS  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    CAS  PubMed  CrossRef  Google Scholar 

  • Kuffner M, De Maria S, Puschenreiter M, Fallmann K, Wieshammer G, Gorfer M, Strauss J, Rivelli AR, Sessitsch A (2010) Culturable bacteria from Zn-and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. J Appl Microbiol 108:1471–1484

    CAS  PubMed  CrossRef  Google Scholar 

  • Lamichhane JR, Venturi V (2015) Synergisms between plant disease complexes: a growing trend. Front Plant Sci 6:385

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lata R, Choudhury S, Gond SK, White JF Jr (2018) Induction of abiotic stress tolerance in plants by endophytic microbes. Lett Appl Microbiol 66:268–276

    CAS  CrossRef  PubMed  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Van der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606

    CrossRef  Google Scholar 

  • Luo SL, Wan Y, Xiao X, Guo H, Chen L, Xi Q, Zeng G, Liu C, Chen J (2011) Isolation and characterization of endophytic bacterium LRE07 from cadmium hyperaccumulator Solanum nigrum L. and its potential for remediation. Appl Microbiol Biotechnol 89:1637–1644

    CAS  PubMed  CrossRef  Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2011) Inoculation of endophytic bacteria on host and non-host plants—effects on plant growth and Ni uptake. J Hazard Mater 195:230–237

    CAS  PubMed  CrossRef  Google Scholar 

  • MacKinnon G, Duncan HJ (2013) Phytotoxicity of branched cyclohexanes found in the volatile fraction of diesel fuel on germination of selected grass species. Chemosphere 90:952–957

    CAS  PubMed  CrossRef  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69:220–228

    CAS  CrossRef  PubMed  Google Scholar 

  • Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–262

    CAS  PubMed  CrossRef  Google Scholar 

  • Mastretta C, Taghavi S, Van Der Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Weyens N, Vangronsveld J (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremediation 11:251–267

    CAS  CrossRef  Google Scholar 

  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Moore FP, Barac T, Borremans B, Oeyen L, Vangronsveld J, Lelie D, Campbell CD, Moore ER (2006) Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterization of isolates with potential to enhance phytoremediation. Syst Appl Microbiol 29:539–556

    CAS  PubMed  CrossRef  Google Scholar 

  • Nair DN, Padmavathy S (2014) Impact of endophytic microorganisms on plants, environment and humans. Hindawi Publishing Corporation. Sci World J. Article ID 250693

    Google Scholar 

  • Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitch A (2014) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73:121–131

    CAS  CrossRef  Google Scholar 

  • Naya L, Ladrera R, Ramos J, González EM, Arrese-Igor C, Minchin FR, Becana M (2007) The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. Plant Physiol 144(2):1104–1114

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Pandey V, Ansari MW, Tula S, Yadav S, Sahoo RK, Shukla N, Bains G, Badal S, Chandra S, Gaur AK, Kumar A (2016) Dose-dependent response of Trichoderma harzianum in improving drought tolerance in rice genotypes. Planta 243:1251–1264

    CAS  PubMed  CrossRef  Google Scholar 

  • Pitman MG, Lauchli A (2002) Global impact of salinity and agricultural ecosystems. In: Lauchli A, Luttge V (eds) Salinity: environment-plants molecules. Kluwer, Dordrecht, pp 3–20

    Google Scholar 

  • Quadt-Hallmann A, Benhamou N, Kloepper JW (1997) Bacterial endophytes in cotton: mechanisms of entering the plant. Can J Microbiol 43:577–582

    CAS  CrossRef  Google Scholar 

  • Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160

    CAS  PubMed  CrossRef  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    CAS  PubMed  CrossRef  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6(4):139–144

    CAS  PubMed  CrossRef  Google Scholar 

  • Reyad AMM, Radwan TEE, Hemida KA, Al-Qasee NAA, Ali RA (2017) Salt tolerant endophytic bacteria from carthamus tinctorius and their role in plant salt tolerance improvement. Int J Curr Sci Res 3:1467–1488

    Google Scholar 

  • Rouhier N, San Koh C, Gelhaye E, Corbier C, Favier F, Didierjean C, Jacquot JP (2008) Redox based antioxidant systems in plants: biochemical and structural analyses. Biochim Biophys Acta 1780:1249–1260

    CAS  PubMed  CrossRef  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    CAS  PubMed  CrossRef  Google Scholar 

  • Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol 50:239–249

    CAS  PubMed  CrossRef  Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel W, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Shehzadi M, Afzal M, Islam E, Mobin A, Anwar S, Khan QM (2014) Enhanced degradation of textile effluent in constructed wetland system using Typha domingensis and textile effluent-degrading endophytic bacteria. Wat Res 58:152–159

    CAS  CrossRef  Google Scholar 

  • Sheng X, Chen X, He L (2008a) Characteristics of an endophytic pyrene-degrading bacterium of Enterobacter sp. 12J1 from Allium macrostemon Bunge. Int Biodeter Biodegr 62:88–95

    CAS  CrossRef  Google Scholar 

  • Sheng XF, Xia JJ, Jiang CY, He LY, Qian M (2008b) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170

    CAS  PubMed  CrossRef  Google Scholar 

  • Shin MN, Shim J, You Y, Myung H, Bang KS, Cho M, Kamala-Kannan S, Oh BT (2012) Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma. J Hazard Mater 199:314–320

    Google Scholar 

  • Siciliano SD, Fortin N, Mihoc A, Wisse G, Labelle S, Beaumier D, Ouellette D, Roy R, Whyte LG, Banks MK, Schwab P, Lee K, Greer CW (2001) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67:2469–2475

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Singh D, Roy BK (2016) Salt stress affects mitotic activity and modulates antioxidant systems in onion roots. Braz J Bot 39:67–76

    CAS  CrossRef  Google Scholar 

  • Sun C, Johnson JM, Cai D, Sherameti I, Oelmüller R, Lou B (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol 167:1009–1017

    CAS  PubMed  CrossRef  Google Scholar 

  • Sun JL, Zeng H, Ni HG (2013) Halogenated polycyclic aromatic hydrocarbons in the environment. Chemosphere 90:1751–1759

    CAS  PubMed  CrossRef  Google Scholar 

  • Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71:8500–8505

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Taghavi S, Weyens N, Vangronsveld J, van der Lelie D (2011) Improved phytoremediation of organic contaminants through engineering of bacterial endophytes of trees. In: Pirttilä AM, Frank AC (eds) Endophytes of forest trees. Springer, Netherlands, pp 205–216

    Google Scholar 

  • Vargas L, Santa Brígida AB, Mota Filho JP, de Carvalho TG, Rojas CA, Vaneechoutte D, Van Bel M, Farrinelli L, Ferreira PC, Vandepoele K, Hemerly AS (2014) Drought tolerance conferred to sugarcane by association with Gluconacetobacter diazotrophicus: a transcriptomic view of hormone pathways. PLoS One 9(12):e114744

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    CAS  PubMed  CrossRef  Google Scholar 

  • Vurukonda SSKP, Vardharajula S, Shrivastava M, Skz A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

    PubMed  CrossRef  Google Scholar 

  • Wang Y, Li H, Zhao W, He X, Chen J, Geng X, Xiao M (2010) Induction of toluene degradation and growth promotion in corn and wheat by horizontal gene transfer within endophytic bacteria. Soil Biol Biochem 42:1051–1057

    CAS  CrossRef  Google Scholar 

  • Wei J, Liu X, Wang Q, Wang C, Chen X, Li H (2014) Effect of rhizodeposition on pyrene bioaccessibility and microbial structure in pyrene and pyrene–lead polluted soil. Chemosphere 97:92–97

    CAS  PubMed  CrossRef  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009a) Phytoremediation: plant-endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254

    CAS  PubMed  CrossRef  Google Scholar 

  • Weyens N, van Der Lelie D, Artois T, Smeets K, Taghavi S, Newman L, Carleer R, Vangronsveld J (2009b) Bioaugmentation with engineered endophytic bacteria improves contaminant fate in phytoremediation. Environ Sci Technol 43:9413–9418

    CAS  PubMed  CrossRef  Google Scholar 

  • Weyens N, Taghavi S, Barac T, van der Lelie D, Boulet J, Artois T, Carleer R, Vangronsveld J (2009c) Bacteria associated with oak and ash on a TCE-contaminated site: characterization of isolates with potential to avoid evapo-transpiration of TCE. Environ Sci Pollut Res 16:830–843

    CAS  CrossRef  Google Scholar 

  • Weyens N, Croes S, Dupae J, Newman L, van der Lelie D, Carleer R, Vangronsveld J (2010a) Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Environ Pollut 158:2422–2427

    CAS  PubMed  CrossRef  Google Scholar 

  • Weyens N, Truyens S, Dupae J, Newman L, Taghavi S, van der Lelie D, Carleer R, Vangronsveld J (2010b) Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings. Environ Pollut 158:2915–2919

    CAS  PubMed  CrossRef  Google Scholar 

  • Weyens N, Schellingen K, Beckers B, Janssen J, Ceulemans R, van der Lelie D, Taghavi S, Carleer R, Vangronsveld J (2013) Potential of willow and its genetically engineered associated bacteria to remediate mixed Cd and toluene contamination. J Soils Sediments 13:176–188

    CAS  CrossRef  Google Scholar 

  • Win KT, Tanaka F, Okazaki K, Ohwaki Y (2018) The ACC deaminase expressing endophyte Pseudomonas spp. enhances NaCl stress tolerance by reducing stress-related ethylene production, resulting in improved growth, photosynthetic performance, and ionic balance in tomato plants. Plant Physiol Biochem 127:599–607

    CAS  PubMed  CrossRef  Google Scholar 

  • Xiao X, Luo S, Zeng G, Wei W, Wan Y, Chen L, Guo H, Cao Z, Yang L, Chen J, Xi Q (2010) Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L. Bioresour Technol 101:1668–1674

    CAS  PubMed  CrossRef  Google Scholar 

  • Yadav A, Yadav K (2017) Exploring the potential of endophytes in agriculture: a minireview. Adv Plants Agric Res 6(4):00221

    Google Scholar 

  • Yousaf S, Andria V, Reichenauer TG, Smalla K, Sessitsch A (2010) Phylogenetic and functional diversity of alkane degrading bacteria associated with Italian ryegrass (Lolium multiflorum) and Birdsfoot trefoil (Lotus corniculatus) in a petroleum oil-contaminated environment. J Hazard Mater 184:523–532

    CAS  PubMed  CrossRef  Google Scholar 

  • Yousaf S, Afzal M, Reichenauer TG, Brady CL, Sessitsch A (2011) Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains. Environ Pollut 159:2675–2683

    CAS  PubMed  CrossRef  Google Scholar 

  • Yue B, Xue WY, Xiong LZ, Yu XQ, Luo LJ, Cui KH, Jin DM, Xing YZ, Zhang QF (2006) Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance. Genetics 172:1213–1228

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Zeidler D, Zahringer U, Gerber I, Dubery I, Hartung T, Bors W, Hutzler P, Durner J (2004) Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Natl Acad Sci USA 101:15811–15816

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF (2011) Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 83(1):57–62

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhu LJ, Guan DX, Luo J, Rathinasabapathi B, Ma LQ (2014) Characterization of arsenic-resistant endophytic bacteria from hyperaccumuators Pteris vittata and Pteris multifida. Chemosphere 113:9–16

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Acknowledgment

Authors are greatly thankful to the Head of Department of Botany, Banaras Hindu University, Varanasi, for providing central lab facility and to UGC and CSIR, New Delhi, for financial assistance in form of JRF and SRF.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Singh, D., Singh, V.K., Singh, A.K. (2019). Endophytic Microbes: Prospects and Their Application in Abiotic Stress Management and Phytoremediation. In: Verma, S., White, Jr, J. (eds) Seed Endophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-10504-4_15

Download citation