Skip to main content

Fitness Attributes of Bacterial and Fungal Seed Endophytes of Tall Fescue

  • Chapter
  • First Online:
Seed Endophytes

Abstract

Increased fitness in tall fescue (Festuca arundinacea) is attributed to infection by Epichloë coenophiala. However, plant growth-promoting (PGP) bacteria also increase the fitness of many host plants, and PGP bacteria have been shown to dominate the phyllosphere and rhizosphere microbiome of E. coenophiala-infected (E+) tall fescue. Because E. coenophialum lives endophytically in tall fescue seeds, we hypothesized that PGP bacteria also live within the seeds and could provide fitness advantages to the host. Endophyte-infected (E+) and endophyte-free (E−) Kentucky-31 tall fescue seeds were surface sterilized to remove epiphytic bacteria. Surface sterilized and non-surface sterilized control plants of each type were cultivated for 6 weeks before withholding water to simulate drought. Normal watering was resumed after 4 days. Plant recovery of each group was measured by assigning a numerical value to tillers based on the state of decline. Surface-sterilized E+ plants were unable to recover as efficiently as E+ controls but outperformed both E− groups. Additionally, total 16S amplified DNA extracted from each seed type was analyzed with Illumina sequencing to assess the internal microbial communities from E+ and E− seeds as well as the seed coat microbiome. E+ seeds have lower diversity of endophytic bacterial species and are dominated by Pseudomonadaceae. Further, several of the seed endophytes are PGP bacterial strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bacon CW, White JF Jr (1994) Biotechnology of endophytic fungi of grasses. CRC Press, Boca Raton, FL

    Google Scholar 

  • Brandl MT, Lindow SE (1998) Contribution of indole-3-acetic acid production on epiphytic fitness of Erwinia herbicola. Appl Environ Microbiol 64:3256–3263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bruehl GW, Kaiser WJ (1996) Some effects of water potential upon endophytic Acremonium spp. in culture. Mycologia 88(5):809–815. https://doi.org/10.1080/00275514.1996.12026719

    Article  Google Scholar 

  • Buyer J, Roberts D, Russek-Cohen E (1999) Microbial community structure and function in the spermosphere as affected by soil and seed type. Can J Microbiol 138:138–144

    Article  Google Scholar 

  • Clay K, Hardy TN, Hammond AM (1985) Fungal endophytes of grasses and their effects on an insect herbivore. Oecologia 66:1–6

    Article  PubMed  Google Scholar 

  • de los Santos MC, Taulé C et al (2015) Identification and characterization of the part of the bacterial community associated with field-grown tall fescue (Festuca arundinacea) cv. SFRO Don Tomás in Uruguay. Ann Microbiol 66(1):1–14

    Google Scholar 

  • Denancé N, Sánchez-Vallet A et al (2013) Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front Plant Sci 4:155. https://doi.org/10.3389/fpls.2013.00155

    Article  PubMed  PubMed Central  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Anderson GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7):5069–5072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dini-Andreote F, Elsas J (2013) Back to the basics: the need for ecophysiological insights to enhance our understanding of microbial behaviour in the rhizosphere. Plant Soil 373:1–15

    Article  CAS  Google Scholar 

  • Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861–864

    Article  CAS  Google Scholar 

  • Feng Y, Shen D et al (2006) Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. J Appl Microbiol 100:938–945

    Article  CAS  PubMed  Google Scholar 

  • Ferreira A, Quecine M et al (2008) Diversity of endophytic bacteria from Eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans. FEMS Microbiol Let 287:8–14

    Article  CAS  Google Scholar 

  • Grady EN, MacDonald J et al (2016) Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Factories 15:203. https://doi.org/10.1186/s12934-016-0603-7

    Article  Google Scholar 

  • Hayat R, Ahmed I et al (2012) An overview of plant growth promoting rhizobacteria (PGPR) for sustainable agriculture. In: Ashraf M, Öztük M, MSA A, Aksoy A (eds) Crop production for agricultural improvement. Springer, Berlin, pp 557–579

    Google Scholar 

  • Hutchson ML, Johnstone K (1993) Evidence for the involvement of the surface active properties of the extracellular toxin tolaasii in the manifestation of brown blotch disease symptoms by Pseudomonas tolaasii on Agaricus bisporus. Physiol Mol Plant Pathol 42(5):373–384

    Article  Google Scholar 

  • Jaleel C, Manivannan P et al (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11(1):100–105

    Google Scholar 

  • Ji H, Fannin F et al (2014) Tall fescue seed extraction and partial purification of ergot alkaloids. Front Chem 2:110. https://doi.org/10.3389/fchem2014.00110

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnston-Monje D, Raizada M (2011) Conservation and diversity of seed associated endophytes in zea across boundaries of evolution, ethnography and ecology. PLoS One 6(6):e20396. https://doi.org/10.1371/journal.pone.0020396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Justus M, Write L, Hartmann T (1997) Levels and tissue distribution of loline alkaloids in endophyte-infected Festuca pratensis. Phytochemisry 44:51–57

    Article  CAS  Google Scholar 

  • Kumar P, Dubey RC, Maheshwari DK (2012) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol Res 167:493–499

    Article  CAS  PubMed  Google Scholar 

  • Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940

    Article  CAS  Google Scholar 

  • Monk J, Gerard E et al (2009) Isolation and identification of plant growth-promoting bacteria associated with tall fescue. Proc N Z Grassl Assoc 71:211–216

    Google Scholar 

  • Moy M, Belanger F et al (2000) Identification of epiphyllous mycelial nets on leaves of grasses infected by clavicipitaceous endophytes. Symbiosis 28:291–302

    Google Scholar 

  • Nagabhyru P, Dinkins RD et al (2013) Tall fescue endophyte effects on tolerance to water-deficit stress. BMC Plant Biol 13:127. https://doi.org/10.1186/1471-2229-13-127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson EB (2004) Microbial dynamics and interactions in the spermosphere. Annu Rev Phytopathol 42:27–309

    Article  Google Scholar 

  • Rassmussen S, Parsens AJ et al (2007) High nutrient supply and carbohydrate content reduce endophyte and alkaloid concentration. New Phytol 173(4):787–797

    Article  Google Scholar 

  • Roberts E, Adamchek C (2017) Interactions between fungal endophytes and bacterial colonizers of fescue grass. In: Dighton J, White JF Jr (eds) The fungal community: its organization and role in the ecosystem, 4th edn. CRC Press, Boca Raton, FL, pp 109–117

    Chapter  Google Scholar 

  • Roberts E, Ferraro A (2015) Rhizosphere microbiome selection by Epichloë endophytes of Festuca arundinacea. Plant Soil 396:229–239. https://doi.org/10.1007/s11104-015-2585-3

    Article  CAS  Google Scholar 

  • Roberts E, Lindow S (2014) Loline alkaloid production by fungal endophytes of Fescue species select for particular epiphytic bacterial microflora. ISME J 8:359–368

    Article  CAS  PubMed  Google Scholar 

  • Rouhier N, Jacquot JP (2008) Getting sick may help plants overcome abiotic stress. New Phytol 180:738–741

    Article  CAS  PubMed  Google Scholar 

  • Saikkonen K, Phillips T et al (2016) Performance of endophyte infected tall fescue in Europe and North America. PLoS One 11(6):e0157382. https://doi.org/10.1371/journal.pone.0157382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schardl CL, Phillips TD (1997) Protective grass endophytes: where are they from and where are they going? Plant Dis 81:430–437

    Article  PubMed  Google Scholar 

  • Siegel MR, Latch GCM, Johnson MC (1985) Acremonium fungal endophytes of tall fescue and perennial ryegrass: significance and control. Plant Dis 69:179–183

    Google Scholar 

  • Singh L, Gill S, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6(2):175–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smits THM, Rezzonico F et al (2010) Genomic and phenotypic characterization of a nonpigmented variant of Pantoea vagans biocontrol strain C9-1 lacking the 530-kb megaplasmid pPag3. FEMS Micro Lett 308(1):48–54

    Article  CAS  Google Scholar 

  • Smits THM, Rezzonico F et al (2011) Metabolic versatility and antibacterial metabolite biosynthesis are distinguishing genomic features of the fire blight antagonist Pantoea vagans C9-1. PLoS One 6(7):e22247. https://doi.org/10.1371/journal.pone.0022247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Truyens S, Weyens N et al (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep 7:40–50

    Article  Google Scholar 

  • White JF Jr (1988) Endophyte-host association in forage grasses. XI Proposal concern origin and evolution. Mycologia 80:442–446

    Article  Google Scholar 

  • White JF Jr (1994) Taxonomic relationships among the members of the Balansieae (Clavicipitales). In: Bacon CW, White JF Jr (eds) Biotechnology of endophytic fungi of grasses. CRC Press, Boca Raton, FL

    Google Scholar 

  • White J, Chen Q et al (2015) Collaboration between grass seedlings and rhizobacteria to scavenge organic nitrogen in soils. AoB Plants 7:plu093. https://doi.org/10.1093/aobpla/plu093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson H, Siegel MR, Blankenship JD, Mallory AC, Bush LP, Schardl CL (2000) Contribution of fungal loline alkaloids to protection from aphids in a grass-endophyte mutualism. MPMI 13:1027–1033

    Article  CAS  PubMed  Google Scholar 

  • Young CA, Charlton ND et al (2014) Characterization of Epichloë coenophiala within the US: are all tall fescue endophytes created equal. Front Chem 2:95. https://doi.org/10.3389/fchm.2014.00095

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Lewis Roberts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roberts, E.L., Mormile, B., Adamchek, C. (2019). Fitness Attributes of Bacterial and Fungal Seed Endophytes of Tall Fescue. In: Verma, S., White, Jr, J. (eds) Seed Endophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-10504-4_13

Download citation

Publish with us

Policies and ethics