Skip to main content

Nonparametric Importance Sampling Techniques for Sensitivity Analysis and Reliability Assessment of a Launcher Stage Fallout

  • Chapter
  • First Online:
Modeling and Optimization in Space Engineering

Abstract

Space launcher complexity arises, on the one hand, from the coupling between several subsystems such as stages or boosters and other embedded systems, and on the other hand, from the physical phenomena endured during the flight. Optimal trajectory assessment is a key discipline since it is one of the cornerstones of the mission success. However, during the real flight, uncertainties can affect the different flight phases at different levels and be combined to lead to a failure state of the space vehicle trajectory. After their propelled phase, the different stages reach successively their separation altitudes and may fall back into the ocean. Such a dynamic phase is of major importance in terms of launcher safety since the consequence of a mistake in the prediction of the fallout zone can be dramatic in terms of human security and environmental impact. For that reason, the handling of uncertainties plays a crucial role in the comprehension and prediction of the global system behavior. Consequently, it is of major concern to take them into account during the reliability analysis. In this book chapter, two new sensitivity analysis techniques are considered to characterize the system uncertainties and optimize its reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beer, M., Ferson, S., Kreinovich, V.: Imprecise probabilities in engineering structures. Mech. Syst. Signal Process. 37, 4–29 (2013)

    Article  Google Scholar 

  2. Bilal, N.: Implementation of Sobol’s method of global sensitivity analysis to a compressor simulation model. In: Proc. of the 22nd International Compressor Engineering Conference, Purdue (2014)

    Google Scholar 

  3. Borgonovo, E.: Measuring uncertainty importance: investigation and comparison of alternative approaches. Risk Anal. 26(5), 1349–1361 (2006)

    Article  Google Scholar 

  4. Borgonovo, E.: A new uncertainty importance measure. Reliab. Eng. Syst. Saf. 92(6), 771–784 (2007)

    Article  Google Scholar 

  5. Borgonovo, E., Plischke, E.: Sensitivity analysis: a review of recent advances. Eur. J. Oper. Res. 248(3), 869–887 (2016)

    Article  MathSciNet  Google Scholar 

  6. Botev, Z.I., Grotowski, J.F., Kroese, D.P.: Kernel density estimation via diffusion. Ann. Stat. 38(5), 2916–2957 (2010)

    Article  MathSciNet  Google Scholar 

  7. Bourinet, J.M.: Rare-event probability estimation with adaptive support vector regression surrogates. Reliab. Eng. Syst. Saf. 150, 210–221 (2016)

    Article  Google Scholar 

  8. Bourinet, J.M.: FORM sensitivities to distribution parameters with the Nataf transformation. In: Gardoni, P. (ed.) Risk and Reliability Analysis: Theory and Applications. In Honor of Prof. Armen Der Kiureghian, Springer Series in Reliability Engineering, pp. 277–302. Springer International Publishing, Cham (2017)

    Google Scholar 

  9. Bucklew, J.A.: Introduction to Rare Event Simulation. Springer, New York (2004)

    Book  Google Scholar 

  10. Chabridon, V., Balesdent, M., Bourinet, J.M., Morio, J., Gayton, N.: Evaluation of failure probability under parameter epistemic uncertainty: application to aerospace system reliability assessment. Aerosp. Sci. Technol. 69, 526–537 (2017)

    Article  Google Scholar 

  11. Chabridon, V., Balesdent, M., Bourinet, J.M., Morio, J., Gayton, N.: Reliability-based sensitivity analysis of aerospace systems under distribution parameter uncertainty using an augmented approach. In: Proc. of the 12th International Conference on Structural Safety and Reliability (ICOSSAR’17), Vienna (2017)

    Google Scholar 

  12. Chabridon, V., Balesdent, M., Bourinet, J.M., Morio, J., Gayton, N.: Reliability-based sensitivity estimators of rare event probability in the presence of distribution parameter uncertainty. Reliab. Eng. Syst. Saf. 178, 164–178 (2018)

    Article  Google Scholar 

  13. Der Kiureghian, A.: Measures of structural safety under imperfect states of knowledge. J. Struct. Eng. ASCE 115(5), 1119–1140 (1989)

    Article  Google Scholar 

  14. Der Kiureghian, A.: Analysis of structural reliability under parameter uncertainties. Probab. Eng. Mech. 23(4), 351–358 (2008)

    Article  Google Scholar 

  15. Der Kiureghian, A., Dakessian, T.: Multiple design points in first and second-order reliability. Struct. Saf. 20, 37–49 (1998)

    Article  Google Scholar 

  16. Derennes, P., Morio, J., Simatos, F.: A nonparametric importance sampling estimator for moment independent importance measures. Reliab. Eng. Syst. Saf. (2018). https://doi.org/10.1016/j.ress.2018.02.009

  17. Devroye, L., Gyorfi, L.: Nonparametric Density Estimation: The L1 View. Wiley, New York (1985)

    MATH  Google Scholar 

  18. Ditlevsen, O.: Generalized second moment reliability index. J. Struct. Mech. 7(4), 435–451 (1979)

    Article  Google Scholar 

  19. Ditlevsen, O., Madsen, H.O.: Structural Reliability Methods, Internet ed. 2.3.7. Technical University of Denmark, Lyngby (2007)

    Google Scholar 

  20. Dubourg, V.: Adaptive surrogate models for reliability analysis and reliability-based design optimization. Ph.D. thesis, Université Blaise Pascal – Clermont II (2011)

    Google Scholar 

  21. Homma, T., Saltelli, A.: Importance measures in global sensitivity analysis of nonlinear models. Reliab. Eng. Syst. Saf. 52(1), 1–17 (1996)

    Article  Google Scholar 

  22. Hoogendoorn, R., Mooij, E., Geul, J.: Uncertainty propagation for statistical impact prediction of space debris. Adv. Space Res. 61(1), 167–181 (2018)

    Article  Google Scholar 

  23. Hurtado, J.E.: Structural Reliability: Statistical Learning Perspectives. Lecture Notes in Applied and Computational Mechanics. Springer, Berlin (2004)

    Google Scholar 

  24. Iooss, B., Lemaître, P.: A review on global sensitivity analysis methods. In: Dellino, G., Meloni, C. (eds.) Uncertainty Management in Simulation-Optimization of Complex Systems: Algorithms and Applications, chap. 5, pp. 101–122. Springer, Boston (2015)

    Chapter  Google Scholar 

  25. Iooss, B., Lemaître, P.: A review on global sensitivity analysis methods. In: Uncertainty Management in Simulation-Optimization of Complex Systems, pp. 101–122. Springer, Berlin (2015)

    Google Scholar 

  26. Lebrun, R., Dutfoy, A.: Do Rosenblatt and Nataf isoprobabilistic transformations really differ? Probab. Eng. Mech. 24, 577–584 (2009)

    Article  Google Scholar 

  27. Lemaire, M.: Structural Reliability. ISTE Ltd, London; Wiley, Hoboken (2009)

    Google Scholar 

  28. Lemaître, P., Sergienko, E., Arnaud, A., Bousquet, N., Gamboa, F., Iooss, B.: Density modification-based reliability sensitivity analysis. J. Stat. Comput. Simul. 85(6), 1200–1223 (2015)

    Article  MathSciNet  Google Scholar 

  29. Limbourg, P., De Rocquigny, E., Andrianov, G.: Accelerated uncertainty propagation in two-level probabilistic studies under monotony. Reliab. Eng. Syst. Saf. 95, 998–1010 (2010)

    Article  Google Scholar 

  30. Millwater, H.R.: Universal properties of kernel functions for probabilistic sensitivity analysis. Probab. Eng. Mech. 24, 89–99 (2009)

    Article  Google Scholar 

  31. Morio, J., Balesdent, M.: Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems: A Practical Approach. Woodhead Publishing, Elsevier, Cambridge (2015)

    Google Scholar 

  32. Pasanisi, A., De Rocquigny, E., Bousquet, N., Parent, E.: Some useful features of the Bayesian setting while dealing with uncertainties in industrial practice. In: Proc. of the 19th European Safety and Reliability Conference (ESREL), Prague (2009)

    Google Scholar 

  33. Pasanisi, A., Keller, M., Parent, E.: Estimation of a quantity of interest in uncertainty analysis: some help from Bayesian decision theory. Reliab. Eng. Syst. Saf. 100, 93–101 (2012)

    Article  Google Scholar 

  34. Ridolfi, G., Mooij, E.: Regression-Based Sensitivity Analysis and Robust Design, pp. 303–336. Springer International Publishing, Cham (2016)

    Google Scholar 

  35. Ronse, A., Mooij, E.: Statistical impact prediction of decaying objects. J. Spacecr. Rocket. 51(6), 1797–1810 (2014)

    Article  Google Scholar 

  36. Rosenblatt, M.: Remarks on a multivariate transformation. Ann. Math. Stat. 23(3), 470–472 (1952)

    Article  MathSciNet  Google Scholar 

  37. Rubino, G., Tuffin, B.: Rare Event Simulation Using Monte Carlo Methods. Wiley, New York (2009)

    Book  Google Scholar 

  38. Rubinstein, R.Y., Kroese, D.P.: Simulation and the Monte Carlo Method, 2nd edn. Wiley, New York (2008)

    MATH  Google Scholar 

  39. Sankararaman, S., Mahadevan, S.: Integration of model verification, validation, and calibration for uncertainty quantification in engineering systems. Reliab. Eng. Syst. Saf. 138, 194–209 (2014)

    Article  Google Scholar 

  40. Sobol, I.M.: Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Experiments 1(4), 407–414 (1993)

    MathSciNet  MATH  Google Scholar 

  41. Sobol, I.M.: A Primer for the Monte Carlo Method. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  42. Soize, C.: Uncertainty Quantification: An Accelerated Course with Advanced Applications in Computational Engineering. Interdisciplinary Applied Mathematics. Springer International Publishing, Cham (2017)

    Book  Google Scholar 

  43. Sudret, B.: Uncertainty propagation and sensitivity analysis in mechanical models – Contributions to structural reliability and stochastic spectral methods. Habilitation à Diriger des Recherches, Université Blaise Pascal – Clermont II (2007)

    Google Scholar 

  44. Tokdar, S.T., Kass, R.E.: Importance sampling: a review. Wiley Interdiscip. Rev. Comput. Stat. 2(1), 54–60 (2009)

    Article  Google Scholar 

  45. Zhang, P.: Nonparametric importance sampling. J. Am. Stat. Assoc. 91(435), 1245–1253 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first and second author contributed equally to this work. The first two authors are currently enrolled in a PhD program, respectively, funded by Université Toulouse III—Paul Sabatier and co-funded by ONERA—The French Aerospace Lab and SIGMA Clermont. Their financial supports are gratefully acknowledged. The authors would like to thank Dr. Loïc Brevault (Research scientist at ONERA—The French Aerospace Lab) for having provided the launch vehicle fallout zone estimation code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Morio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Derennes, P. et al. (2019). Nonparametric Importance Sampling Techniques for Sensitivity Analysis and Reliability Assessment of a Launcher Stage Fallout. In: Fasano, G., Pintér, J. (eds) Modeling and Optimization in Space Engineering . Springer Optimization and Its Applications, vol 144. Springer, Cham. https://doi.org/10.1007/978-3-030-10501-3_3

Download citation

Publish with us

Policies and ethics