Skip to main content

Optimized Packings in Space Engineering Applications: Part I

  • Chapter
  • First Online:
Modeling and Optimization in Space Engineering

Abstract

Packing optimization problems have a wide spectrum of real-word applications, including transportation, logistics, chemical/civil/mechanical/power/aerospace engineering, shipbuilding, robotics, additive manufacturing, materials science, mineralogy, molecular geometry, nanotechnology, electronic design automation, very large system integration, pattern recognition, biology, and medicine. In space engineering, ever more challenging packing optimization problems have to be solved, requiring dedicated cutting-edge approaches.

Two chapters in this volume investigate very demanding packing issues that require advanced solutions. The present chapter provides a bird’s eye view of challenging packing problems in the space engineering framework, offering some insight on possible approaches. The specific issue of packing a given collection of arbitrary polyhedra, with continuous rotations and minimum item-to-item admissible distance, into a convex container of minimum size, is subsequently analyzed in depth, discussing an ad hoc mathematical model and a dedicated solution algorithm. Computational results show the efficiency of the approach proposed. The following (second) chapter examines a class of packing optimization problems in space with consideration to balancing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fasano, G., Pintér, J.D.: Optimized Packings and their Applications. Springer Optimization and its Applications. Springer, New York (2015)

    Google Scholar 

  2. Cagan, J., Shimada, K., Yin, S.: A survey of computational approaches to three-dimensional layout problems. Comput. Aided Des. 34, 597–611 (2002)

    Article  Google Scholar 

  3. Dyckhoff, H., Scheithauer, G., Terno, J.: Cutting and Packing. In: Dell’Amico, M., Maffioli, F., Martello, S. (eds.) Annotated Bibliographies in Combinatorial Optimization, pp. 393–412. Wiley, Chichester (1997)

    Google Scholar 

  4. Ibaraki, T., Imahori, S., Yagiura, M.: Hybrid Metaheuristics for Packing Problems. In: Blum, C., Aguilera, M.J., Roli, A., Sampels, M. (eds.) Hybrid Metaheuristics: an Emerging Approach to Optimization. Studies in Computational Intelligence (SCI), vol. 114, pp. 185–219. Springer, Berlin (2008)

    Chapter  Google Scholar 

  5. Faroe, O., Pisinger, D., Zachariasen, M.: Guided local search for the three-dimensional bin packing problem. INFORMS J. Comput. 15(3), 267–283 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fekete, S., Schepers, J.: A combinatorial characterization of higher-dimensional orthogonal packing. Math. Oper. Res. 29, 353–368 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fekete, S., Schepers, J., van der Veen, J.C.: An exact algorithm for higher-dimensional orthogonal packing. Oper. Res. 55(3), 569–587 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Martello, S., Pisinger, D., Vigo, D.: The three-dimensional bin packing problem. Oper. Res. 48(2), 256–267 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Martello, S., Pisinger, D., Vigo, D., Den Boef, E., Korst, J.: Algorithms for general and robot-packable variants of the three-dimensional bin packing problem. ACM Trans. Math. Softw. 33(1), 7 (2007)

    Article  MATH  Google Scholar 

  10. Pisinger, D.: Heuristics for the container loading problem. Eur. J. Oper. Res. 141(2), 382–392 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Addis, B., Locatelli, M., Schoen, F.: Efficiently packing unequal disks in a circle: a computational approach which exploits the continuous and combinatorial structure of the problem. Oper. Res. Lett. 36(1), 37–42 (2008a)

    Article  MathSciNet  MATH  Google Scholar 

  12. Birgin, E., Martinez, J., Nishihara, F.H., Ronconi, D.P.: Orthogonal packing of rectangular items within arbitrary convex regions by nonlinear optimization. Comput. Oper. Res. 33(12), 3535–3548 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Egeblad, J., Nielsen, B.K., Odgaard, A.: Fast neighborhood search for two-and three-dimensional nesting problems. Eur. J. Oper. Res. 183(3), 1249–1266 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gomes, A.M., Olivera, J.F.: A 2-exchange heuristics for nesting problems. Eur. J. Oper. Res. 141, 359–570 (2002)

    Article  MathSciNet  Google Scholar 

  15. Scheithauer, G., Stoyan, Y.G., Romanova, T.Y.: Mathematical modeling of interactions of primary geometric 3D objects. Cybern. Syst. Anal. 41, 332–342 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Teng, H., Sun, S., Liu, D., Li, Y.: Layout optimization for the objects located within a rotating vessel a three-dimensional packing problem with behavioural constraints. Comput. Oper. Res. 28(6), 521–535 (2001)

    Article  MATH  Google Scholar 

  17. Caprara, A., Monaci, M.: On the 2-dimensional knapsack problem. Oper. Res. Lett. 32(1), 5–14 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Egeblad, J., Pisinger, D.: Heuristic approaches for the two- and three-dimensional knapsack packing problems. DIKU Technical-Report 2006–13, SSN: 0107-8283, Department of Computer Science, University of Copenhagen, Denmark (2006)

    Google Scholar 

  19. Egeblad, J., Pisinger, D.: Heuristic approaches for the two- and three-dimensional knapsack packing problem. Comput. Oper. Res. 36, 1026–1049 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fekete, S.P., Schepers, J.: A New Exact Algorithm for General Orthogonal D-dimensional Knapsack Problems. In: Algorithms ESA’97, Springer Lecture Notes in Computer Science, vol. 1284, pp. 144–156 (1997)

    Google Scholar 

  21. Bortfeldt, A., Wäscher, G.: Container loading problems - A state-of-the-art review. FEMM Working Papers 120007, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management (2012)

    Google Scholar 

  22. Kang, M.K., Jang, C.S., Yoon, K.S.: Heuristics with a new block strategy for the single and multiple container loading problems. J. Oper. Res. Soc. 61, 95–107 (2010)

    Article  MATH  Google Scholar 

  23. Parreño, F., Alvarez-Valdes, R., Oliveira, J.F., Tamarit, J.M.: A maximal-space algorithm for the container loading problem. INFORMS J. Comput. 20(3), 412–422 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lodi, A., Martello, S., Monaci, M., Vigo, D.: Two-dimensional Bin Packing Problems. In: Paschos, V.T. (ed.) Paradigms of Combinatorial Optimization, pp. 107–129. Wiley/ISTE, Hoboken (2010)

    Google Scholar 

  25. Pisinger, D., Sigurd, M.: Using decomposition techniques and constraint programming for solving the two-dimensional bin packing problem. INFORMS J. Comput. 19(1), 36–51 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Iori, M., Martello, S., Monaci, M.: Metaheuristic Algorithms for the Strip Packing Problem. In: Pardalos, P.M., Korotkikh, V. (eds.) Optimization and Industry: New Frontiers, pp. 159–179. Kluwer, Hardbound (2003)

    Chapter  Google Scholar 

  27. Kenmochi, M., Imamichi, T., Nonobe, K., Yagiura, M., Nagamochi, H.: Exact algorithms for the two-dimensional strip packing problem with and without rotations. Eur. J. Oper. Res. 198, 73–83 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, D., Kang, Y., Deng, A.: A new heuristic recursive algorithm for the strip rectangular packing problem. Comput. Oper. Res. 33, 2209–2217 (2006)

    Article  MATH  Google Scholar 

  29. Li, H.L., Chang, C.T., Tsai, J.F.: Approximately global optimization for assortment problems using piecewise linearization techniques. Eur. J. Oper. Res. 140, 584–589 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pan, P., Liu, C.L.: Area minimization for floorplans. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 14(1), 123–132 (2006)

    MathSciNet  Google Scholar 

  31. Pintér, J.D., Kampas, F.J.: MathOptimizer Professional: Key Features and Illustrative Applications. In: Liberti, L., Maculan, N. (eds.) Global Optimization: From Theory to Implementation, pp. 263–279. Springer, Berlin (2006)

    Chapter  Google Scholar 

  32. Pintér, J.D., Kampas, F.J., Castillo, I.: Globally optimized packings of non-uniform size spheres in ℝd: a computational study. Optim. Lett. 12(3), 585–613 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Allen, S.D., Burke, E.K., Kendall, G.: A hybrid placement strategy for the three-dimensional strip packing problem. Eur. J. Oper. Res. 209(3), 219–227 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Bennel, J.A., Lee, L.S., Potts, C.N.: A genetic algorithm for two-dimensional bin packing with due dates. Int. J. Prod. Econ. 145(2), 547–560 (2013)

    Article  Google Scholar 

  35. Bennell, J.A., Han, W., Zhao, X., Song, X.: Construction heuristics for two-dimensional irregular shape bin packing with guillotine constraints. Eur. J. Oper. Res. 230(3), 495–504 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Bennell, J.A., Oliveira, J.F.: A tutorial in irregular shape packing problems. J. Oper. Res. Soc. 60(S1), S93–S105 (2009)

    Article  MATH  Google Scholar 

  37. Bortfeldt, A., Gehring, H.: A hybrid genetic algorithm for the container loading problem. Eur. J. Oper. Res. 131(1), 143–161 (2001)

    Article  MATH  Google Scholar 

  38. Burke, E.K., Hellier, R., Kendall, G., Whitwell, G.: A new bottom-left-fill heuristic algorithm for the 2D irregular packing problem. Oper. Res. 54(3), 587–601 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Burke, E.K., Guo, Q., Hellier, R., Kendall, G.: A hyper-heuristic approach to strip packing problems. PPSN. 1, 465–474 (2010)

    Google Scholar 

  40. Coffman, E., Garey, J.M., Johnson, D.: Approximation Algorithms for Bin Packing: A Survey. PWS Publishing, Boston (1997)

    MATH  Google Scholar 

  41. Dowsland, K.A., Herbert, E.A., Kendall, G., Burke, E.: Using tree search bounds to enhance a genetic algorithm approach to two rectangle packing problems. Eur. J. Oper. Res. 168(2), 390–402 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Gehring, H., Bortfeldt, A.: A parallel genetic algorithm for solving the container loading problem. Int. Trans. Oper. Res. 9(4), 497–511 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Gonçalves, J.F., Resende, M.G.: A parallel multi-population biased random-key genetic algorithm for a container loading problem. Comput. Oper. Res. 39(2), 179–190 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hopper, E., Turton, B.C.: A review of the application of meta-heuristic algorithms to 2D strip packing problems. Artif. Intell. Rev. 16(4), 257–300 (2001)

    Article  MATH  Google Scholar 

  45. Hopper, E., Turton, B.C.: An empirical study of meta-heuristics applied to 2D rectangular bin packing - part II. Studia Inform. Universalis. 2(1), 93–106 (2002)

    Google Scholar 

  46. López-Camacho, E., Ochoa, G., Terashima-Marín, H., Burke, E.: An effective heuristic for the two-dimensional irregular bin packing problem. Annals OR. 206(1), 241–264 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Mack, D., Bortfeldt, A., Gehring, H.: A parallel hybrid local search algorithm for the container loading problem. Int. Trans. Oper. Res. 11(5), 511–533 (2004)

    Article  MATH  Google Scholar 

  48. Oliveira, J.F., Gomes, A.M., Ferreira, J.S.: TOPOS - a new constructive algorithm for nesting problems. OR Spectr. 22(2), 263–284 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ramakrishnan, K., Bennel, J.A., Omar, M.K.: Solving Two Dimensional Layout Optimization Problems with Irregular Shapes by Using Meta-Heuristic. In: 2008 IEEE International Conference on Industrial Engineering and Engineering Management, pp. 178–182 (2008)

    Chapter  Google Scholar 

  50. Terashima-Marín, H., Ross, P., Farías-Zárate, C.J., López-Camacho, E., Valenzuela-Rendón, M.: Generalized hyper-heuristics for solving 2D regular and irregular packing problems. Ann. Oper. Res. 179, 369–392 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wang, Z., Li, K.W., Levy, J.K.: A heuristic for the container loading problem: a tertiary-tree-based dynamic space decomposition approach. Eur. J. Oper. Res. 191(1), 86–99 (2008)

    Article  MATH  Google Scholar 

  52. Yeung, L.H., Tang, W.K.: A hybrid genetic approach for container loading in logistics industry. IEEE Trans. Ind. Electron. 52(2), 617–627 (2005)

    Article  Google Scholar 

  53. Allen, S.D., Burke, E.K., Mareček, J.: A space-indexed formulation of packing boxes into a larger box. Oper. Res. Lett. 40(1), 20–24 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  54. Chen, C.S., Lee, S.M., Shen, Q.S.: An analytical model for the container loading problem. Eur. J. Oper. Res. 80, 68–76 (1995)

    Article  MATH  Google Scholar 

  55. Chernov, N., Stoyan, Y.G., Romanova, T.: Mathematical model and efficient algorithms for object packing problem. Comput. Geom. Theory Appl. 43(5), 535–553 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  56. Fasano, G.: Satellite Optimal Layout, Application of Mathematical and Optimization Techniques, pp. 22–26. IBM Europe Institute, Garmisch (1989)

    Google Scholar 

  57. Fischetti, M., Luzzi, I.: Mixed-integer programming models for nesting problems. J. Heuristics. 15(3), 201–226 (2009)

    Article  MATH  Google Scholar 

  58. Hadjiconstantinou, E., Christofides, N.: An exact algorithm for general, orthogonal, two-dimensional knapsack problems. Eur. J. Oper. Res. 83(1), 39–56 (1995)

    Article  MATH  Google Scholar 

  59. Kallrath, J.: Cutting circles and polygons from area-minimizing rectangles. J. Glob. Optim. 43(2–3), 299–328 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  60. Padberg, M.W.: Packing Small Boxes into a Big Box. Office of Naval Research, N00014-327, New York University, New York (1999)

    MATH  Google Scholar 

  61. Pisinger, D., Sigurd, M.: The two-dimensional bin packing problem with variable bin sizes and costs. Discret. Optim. 2(2), 154–167 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  62. Daughtrey, R.S.: A Simulated Annealing Approach to 3-D Packing with Multiple Constraints. Cosmic Program MFS28700. Boeing Huntsville AI Center, Huntsville (1991)

    Google Scholar 

  63. Fasano, G.: Solving Non-Standard Packing Problems by Global Optimization and Heuristics. In: Springer Briefs in Optimization. Springer, New York (2014)

    Google Scholar 

  64. Fasano, G., Lavopa, C., Negri, D., Vola, M.C.: CAST: A Successful Project in Support of the International Space Station Logistics. In: Fasano, G., Pintér, J.D. (eds.) Optimized Packings and their Applications. Springer Optimization and its Applications. Springer, New York (2015)

    Google Scholar 

  65. Fasano, G., Pintér, J.D.: Modeling and Optimization in Space Engineering. Springer, New York (2013)

    Book  MATH  Google Scholar 

  66. Fasano, G., Pintér, J.D.: Space Engineering. Modeling and Optimization with Case Studies. Springer Optimization and its Applications. Springer, New York (2016)

    MATH  Google Scholar 

  67. Fasano, G., Vola, M.C.: Space Module On-Board Stowage Optimization Exploiting Containers’ Empty Volumes. In: Fasano, G., Pintér, J.D. (eds.) Modeling and Optimization in Space Engineering, pp. 249–269. Springer, New York (2013)

    Chapter  Google Scholar 

  68. Takadama, A.K., Shimomura, K.: Cargo Layout Optimization in Spacecraft: Exploring Heuristics for Branch-and- Bound Method. In: The 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space (2005)

    Google Scholar 

  69. Addis, B., Locatelli, M., Schoen, F.: Disk packing in a square: a new global optimization approach. INFORMS J. Comput. 20(4), 516–524 (2008b)

    Article  MathSciNet  MATH  Google Scholar 

  70. Castillo, I., Kampas, F.J., Pintér, J.D.: Solving circle packing problems by global optimization: numerical results and industrial applications. Eur. J. Oper. Res. 191(3), 786–802 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  71. Floudas, C.A., Akrotirianakis, I.G., Caratzoulas, S., Meyer, C.A., Kallrath, J.: Global optimization in the 21st century: advances and challenges for problems with nonlinear dynamics. Comput. Chem. Eng. 29, 1185–1202 (2005)

    Article  Google Scholar 

  72. Floudas, C.A., Pardalos, P.M.: A Collection of Test Problems for Constrained Global Optimization Algorithms. Springer, New York (1990)

    Book  MATH  Google Scholar 

  73. Floudas, C.A., Pardalos, P.M., et al.: Handbook of Test Problems in Local and Global Optimization, Nonconvex Optimization and its Applications Series, vol. 33. Kluwer, Dordrecht (1999)

    MATH  Google Scholar 

  74. Floudas, C.A., Pardalos, P.M. (eds.): Encyclopedia of Optimization. Kluwer, Dordrecht (2001)

    MATH  Google Scholar 

  75. Horst, R., Pardalos, P.M. (eds.): Handbook of Global Optimization, vol. 1. Kluwer, Dordrecht (1995)

    MATH  Google Scholar 

  76. Horst, R., Pardalos, P.M. (eds.): Developments in Global Optimization. Kluwer, Dordrecht (1997)

    Google Scholar 

  77. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches, 3rd edn. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  78. Kallrath, J.: Mixed-Integer Nonlinear Applications. In: Ciriani, T., Ghiozzi, S., Johnson, E.L. (eds.) Operations Research in Industry, pp. 42–76. Macmillan, London (1999)

    Chapter  Google Scholar 

  79. Kallrath, J.: Modeling Difficult Optimization Problems. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, 2nd edn, pp. 2284–2297. Springer, New York (2008)

    Google Scholar 

  80. Liberti, L., Maculan, N. (eds.): Global Optimization: from Theory to Implementation. Springer, New York (2005)

    Google Scholar 

  81. Locatelli, M., Raber, U.: Packing equal circles into a square: a deterministic global optimization approach. Discret. Appl. Math. 122, 139–166 (2002)

    Article  MATH  Google Scholar 

  82. Pardalos, P.M., Resende, M.G. (eds.): Handbook of Applied Optimization. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  83. Pardalos, P.M., Romeijn, H.E. (eds.): Handbook of Global Optimization, vol. 2. Kluwer, Dordrecht (2002)

    MATH  Google Scholar 

  84. Pintér, J.D.: Global Optimization in Action. Kluwer, Dordrecht (1996)

    Book  MATH  Google Scholar 

  85. Rebennack, S., Kallrath, J., Pardalos, P.M.: Column enumeration based decomposition techniques for a class of non-convex MINLP problems. J. Glob. Optim. 43(2–3), 277–297 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  86. Pintér, J.D.: Global optimization in practice: state of the art and perspectives. In: Gao, D., Sherali, H. (eds.) Advances in Applied Mathematics and Global Optimization. Advances in Mechanics and Mathematics, vol. 17. Springer, Boston (2009)

    Google Scholar 

  87. Fasano, G.: A Modeling-Based Approach for Non-standard Packing Problems. In: Fasano, G., Pintér, J.D. (eds.) Optimized Packings and their Applications. Springer Optimization and its Applications. Springer, New York (2015)

    Google Scholar 

  88. Fasano, G., Saia, D., Piras, A.: Columbus stowage optimization by CAST (Cargo Accommodation Support Tool). Acta Astronaut. 67(3–4), 489–495 (2010)

    Article  Google Scholar 

  89. Stoyan, Y., Grebennik, I., Romanova, T., Kovalenko, A.: Optimized Packings in Space Engineering Applications - Part II. In: Fasano, G., Pintér, J.D. (eds.) Modeling and Optimization in Space Engineering - 2019. Springer, New York (2019)

    Google Scholar 

  90. Romanova, T., Bennell, J., Stoyan, Y., Pankratov, A.: Packing of concave polyhedra with continuous rotations using nonlinear optimization. Eur. J. Oper. Res. 268(1), 37–53 (2018)

    Article  MATH  Google Scholar 

  91. Stoyan, Y., Pankratov, A., Romanova, T.: Quasi phi-functions and optimal packing of ellipses. J. Glob. Optim. 65(2), 283–307 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  92. Stoyan, Y., Romanova, Т.: Mathematical Models of Placement Optimisation: Two- and Three-Dimensional Problems and Applications. In: Fasano, G., Pintér, J. (eds.) Modeling and Optimization in Space Engineering, Springer Optimization and its Applications, vol. 73, pp. 363–388. Springer, New York (2012)

    Chapter  Google Scholar 

  93. Stoyan, Y., Romanova, T., Pankratov, A., Kovalenko, A., Stetsyuk, P.: Modeling and Optimization of Balance Layout Problems. In: Fasano, G., Pintér, J. (eds.) Space Engineering. Modeling and Optimization with Case Studies. Springer Optimization and its Applications, vol. 114, pp. 369–400. Springer, New York (2016)

    MATH  Google Scholar 

  94. Egeblad, J., Nielsen, B.K., Brazil, M.: Translational packing of arbitrary polytopes. Comput. Geom. Theory Appl. 42(4), 269–288 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  95. Liu, X., Liu, J., Cao, A., Yao, Z.: HAPE3D - a new constructive algorithm for the 3D irregular packing problem. Front. Inform. Tech. Elect. Eng. 16(5), 380–390 (2015)

    Article  Google Scholar 

  96. Youn-Kyoung, J., Sang, D.N.: Intelligent 3D packing using a grouping algorithm for automotive container engineering. J. Comput. Des. Eng. 1(2), 140–151 (2014)

    Google Scholar 

  97. Pankratov, O., Romanova, T., Stoyan, Y., Chuhai, A.: Optimization of packing polyhedra in spherical and cylindrical containers. East. Eur. J. Enterp. Tech. 4(79), 39–47 (2016)

    Google Scholar 

  98. Stetsyuk, P., Romanova, T., Scheithauer, G.: On the global minimum in a balanced circular packing problem. Optim. Lett. 10, 1347–1360 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  99. Stoyan, Y.G., Gil, N.I., Pankratov, A.V.: Packing Non-convex Polyhedra into a Parallelepiped. Technische Universitat Dresden, Dresden (2004)

    Google Scholar 

  100. Stoyan, Y., Gil, N., Scheithauer, G., Pankratov, A., Magdalina, I.: Packing of convex polyhedra into a parallelepiped. Optimization. 54(2), 215–235 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  101. Stoyan, Y., Pankratov, A., Romanova, T., Chugay, A.: Optimized Object Packings Using Quasi-Phi-Functions. In: Fasano, G., Pintér, J. (eds.) Optimized Packings and their Applications, Springer Optimization and its Applications, vol. 105, pp. 265–291. Springer, New York (2015)

    MATH  Google Scholar 

  102. Fischer, K., Gärtner, B., Kutz, M.: Fast Smallest-Enclosing-Ball Computation in High Dimensions. In: Algorithms - ESA 2003, vol. 2832, pp. 630–641 (2003)

    Chapter  Google Scholar 

  103. Wachter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large- scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Fasano .

Editor information

Editors and Affiliations

Appendices

Appendix: Phi-Functions and Quasi-Phi-Functions

Phi-Functions

Phi-functions allow us to distinguish among the following three cases: sets A and B are intersecting so that A and B have common interior points; A and B do not have common points; A and B are in contact, i.e., A and B have only common boundary points.

Let A ⊂ R 3 and B ⊂ R 3 be two objects. The sizes of objects can change according to homothetic coefficients (scaling parameters) λ A, λ B > 0. The position of object A is defined by a vector of placement parameters (v A, θ A), where v A = (x A, y A, z A) is a translation vector and \( {\theta}_A=\left({\theta}_A^1,{\theta}_A^2,{\theta}_A^3\right) \) is a vector of rotation angles. We denote the vector of variables for the object A by u A = (v A, θ A, λ A) and the vector of variables for the object B by u B = (v B, θ B, λ B). The object A, rotated by angles \( {\theta}_A^1,{\theta}_A^2,{\theta}_A^3 \), translated by vector v A, and rescaled by homothetic coefficient λ A,will be denoted by A(u A).

Definition A1

A continuous function ΦAB(u A, u B) is called a phi-function for objects A(u A) and B(u B) if

  • ΦAB > 0, if A(u A) ∩ B(u B) = ∅;

  • ΦAB = 0, if intA(u A) ∩  int B(u B) = ∅ and frA(u A) ∩ frB(u B) ≠ ∅;

  • ΦAB < 0, if intA(u A) ∩  int B(u B) ≠ ∅;

provided that λ A, λ Bare fixed.

Here frA means the boundary (frontier) and intA means the interior of object A.

Thus, inequality ΦAB ≥ 0 represents the non-overlapping relationship intA(u A) ∩  int B(u B) =  ∅ , i.e., ΦAB ≥ 0 ⇔  int A(u A) ∩  int B(u B) =  ∅ .

We use phi-functions for the description of the containment relation A ⊆ B as follows: \( {\Phi}^{AB^{\ast }}\ge 0 \), where B * = R 3\ int B.

We emphasize that according to Definition 1, the phi-function ΦAB for a pair of objects A and B can be constructed by many different formulas [55], and we can choose the most convenient ones for our optimization algorithms.

We can take into account minimum allowable distance constraints by replacing the phi-functions in the non-overlapping and containment constraints with adjusted phi-functions.

Let ρ > 0 be a given minimum allowable distance between objects A(u A) and B(u B).

Definition A2

A continuous and everywhere defined function \( {\overset{{\frown}}{\Phi}}^{AB}\left({u}_A,{u}_B\right) \) is called an adjusted phi-function for objects A(u A) and B(u B), if

  • \( {\overset{{\frown}}{\Phi}}^{AB}>0, \) if dist(A, B) > ρ; \( {\overset{{\frown}}{\Phi}}^{AB}=0, \) if dist(A, B) = ρ;

  • \( {\overset{{\frown}}{\Phi}}^{AB}<0, \) if dist(A, B) < ρ.

Now we can describe the distance constraint for objects A(u A) and B(u B) in the form: \( {\overset{{\frown}}{\Phi}}^{AB}\ge 0\iff \)dist(A,B)≥ρ.

Quasi-Phi-Functions

We introduce a function ΦAB(u A, u B, u ) that must be defined for all values of u A and u B. In addition to the placement parameters of objects used with phi-functions, quasi-phi-functions depend on auxiliary variables u′. These extra variables u′ take values in some domain U ⊂ R η. The number and the nature of variables u′ depend on the shapes of objects A(u A) and B(u B), as well as on the restrictions of a layout problem.

Definition A3

A continuous function ΦAB(u A, u B, u ) is called a quasi-phi-function for two objects A(u A) and B(u B) if \( \underset{u\prime\in U}{\max }{\Phi^{\prime}}^{AB}\left({u}_A,{u}_B,{u}^{^\prime}\right) \) is a phi-function for the objects.

The main property of a quasi-phi-function is the following:

  • if ΦAB(u A, u B, u ) ≥ 0 for some u′, then intA(u A) ∩ int B(u B) = ∅,

where ΦAB(u A, u B, u ) is a quasi-phi-function for two objects A(u A) and B(u B).

Let ρ > 0 be a given minimum allowable distance between objects A(u A) and B(u B).

Definition A4

Function \( {\overset{{\frown}}{\Phi^{\prime}}^{AB}}\left({u}_A,{u}_B,{u}^{\prime}\right) \) is called an adjusted quasi-phi-function for objects A(u A) and B(u B), if function \( \underset{u^\prime}{\max }{\overset{{\frown}}{\Phi^\prime}^{AB}}\left({u}_A,{u}_B,{u}^{\prime}\right) \) is an adjusted phi-function for the objects.

We can define the distance constraint for objects A(u A) and B(u B) in the form: \( {{\overset{{\frown}}{\Phi}}^{\prime}}^{AB}\ge 0. \) The inequality implies dist(A,B)≥ρ.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stoyan, Y. et al. (2019). Optimized Packings in Space Engineering Applications: Part I. In: Fasano, G., Pintér, J. (eds) Modeling and Optimization in Space Engineering . Springer Optimization and Its Applications, vol 144. Springer, Cham. https://doi.org/10.1007/978-3-030-10501-3_15

Download citation

Publish with us

Policies and ethics