Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 415 Accesses

Abstract

Energy demand has increased enormously, and the consumption of fossil fuels and nuclear energy has caused many environmental problems. In fact, fossil fuels are exhaustible, polluting and rather expensive. However, the development of clean and renewable energies such as wind, biomass, geothermal and photovoltaic, are a promising solution to overcome problems of conventional energy sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.B. Kjaer, J.K. Pedersen, F. Blaabjerg, A review of single-phase grid-connected inverters for photovoltaic modules. IEEE Trans. Ind. Appl. 41(5), 1292–1306 (2005)

    Article  Google Scholar 

  2. M. Hammami, G. Grandi, M. Rudan, An improved MPPT algorithm based on hybrid RCC scheme for single-phase PV systems, in IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society (2016), pp. 3024–3029

    Google Scholar 

  3. N. Femia, G. Petrone, G. Spagnuolo, M. Vitelli, Optimization of perturb and observe maximum power point tracking method. IEEE Trans. Power Electron. 20(4), 963–973 (2005)

    Article  Google Scholar 

  4. M. Khaled, H. Ali, M. Abd-El Sattar, A.A. Elbaset, Implementation of a modified perturb and observe maximum power point tracking algorithm for photovoltaic system using an embedded microcontroller. IET Renew. Power Gener. 10(4), 551–560 (2016)

    Article  Google Scholar 

  5. R.M. Linus, P. Damodharan, Maximum power point tracking method using a modified perturb and observe algorithm for grid connected wind energy conversion systems. IET Renew. Power Gener. 9, 682–689 (2015)

    Article  Google Scholar 

  6. L. Piegari, R. Rizzo, I. Spina, P. Tricoli, Optimized adaptive perturb and observe maximum power point tracking control for photovoltaic generation. Energies 8(5), 3418–3436 (2015)

    Article  Google Scholar 

  7. E. Kandemir, N.S. Cetin, S. Borekci, A comprehensive overview of maximum power extraction methods for PV systems. Renew. Sustain. Energy Rev. 78, 93–112 (2017)

    Article  Google Scholar 

  8. C. Li, Y. Chen, D. Zhou, J. Liu, J. Zeng, A high-performance adaptive incremental conductance MPPT algorithm for photovoltaic systems. Energies 9(4), 288 (2016)

    Article  Google Scholar 

  9. D. Sera, L. Mathe, T. Kerekes, S.V. Spataru, R. Teodorescu, On the perturb-and-observe and incremental conductance MPPT methods for PV systems. IEEE J. Photovoltaics 3(3), 1070–1078 (2013)

    Article  Google Scholar 

  10. S.E. Babaa, M. Armstrong, V. Pickert, T. Esram, P.L. Chapman, Overview of maximum power point tracking control methods for PV systems. IEEE Trans. Energy Convers. 22(08), 59–72 (2014)

    Google Scholar 

  11. T. Esram, P.L. Chapman, Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans. Energy Convers. 22(2), 439–449 (2007)

    Article  Google Scholar 

  12. J.W. Kimball, P.T. Krein, Discrete-time ripple correlation control for maximum power point tracking. IEEE Trans. Power Electron. 23(5), 2353–2362 (2008)

    Article  Google Scholar 

  13. D. Casadei, G. Grandi, C. Rossi, Single-phase single-stage photovoltaic generation system based on a ripple correlation control maximum power point tracking. IEEE Trans. Energy Convers. 21(2), 562–568 (2006)

    Article  Google Scholar 

  14. R. Khanna, Q. Zhang, W.E. Stanchina, G.F. Reed, Z.H. Mao, Maximum power point tracking using model reference adaptive control. IEEE Trans. Power Electron. 29(3), 1490–1499 (2014)

    Article  Google Scholar 

  15. C. Boonmee, Y. Kumsuwan, Control of single-phase cascaded H-bridge multilevel inverter with modified MPPT for grid-connected photovoltaic systems, in IECON 2013—39th Annual Conference of the IEEE Industrial Electronics Society (2013), pp. 566–571

    Google Scholar 

  16. E. Babaei, S. Laali, Z. Bayat, A single-phase cascaded multilevel inverter based on a new basic unit with reduced number of power switches. IEEE Trans. Ind. Electron. 62(2), 922–929 (2015)

    Article  Google Scholar 

  17. G. Buticchi, E. Lorenzani, G. Franceschini, A five-level single-phase grid-connected converter for renewable distributed systems. IEEE Trans. Ind. Electron. 60(3), 906–918 (2013)

    Article  Google Scholar 

  18. G. Buticchi, D. Barater, E. Lorenzani, C. Concari, G. Franceschini, A nine-level grid-connected converter topology for single-phase transformerless PV systems. IEEE Trans. Ind. Electron. 61(8), 3951–3960 (2014)

    Article  Google Scholar 

  19. X. Yuan, H. Stemmler, I. Barbi, S. Member, Self-balancing of the clamping-capacitor-voltages in the multilevel capacitor-clamping-inverter under sub-harmonic PWM modulation. IEEE Trans. Power Electron. 16(2), 256–263 (2001)

    Article  Google Scholar 

  20. N.A. Rahim, J. Selvaraj, Multistring five-level inverter with novel PWM control scheme for PV application. IEEE Trans. Ind. Electron. 57(6), 2111–2123 (2010)

    Article  Google Scholar 

  21. S. Debnath, J. Qin, B. Bahrani, M. Saeedifard, P. Barbosa, Operation, control, and applications of the modular multilevel converter: a review. IEEE Trans. Power Electron. 30(1), 37–53 (2015)

    Article  Google Scholar 

  22. S.K. Chattopadhyay, C. Chakraborty, A new asymmetric multilevel inverter topology suitable for solar PV applications with varying irradiance. IEEE Trans. Sustain. Energy 3029(99), 1 (2017)

    Google Scholar 

  23. S.K. Chattopadhyay, C. Chakraborty, A new multilevel inverter topology with self-balancing level doubling network. IEEE Trans. Ind. Electron. 61(9), 4622–4631 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manel Hammami .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hammami, M. (2019). General Introduction. In: Level Doubling Network and Ripple Correlation Control MPPT Algorithm for Grid-Connected Photovoltaic Systems . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-10492-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10492-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10491-7

  • Online ISBN: 978-3-030-10492-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics