Skip to main content

Proteases from Extremophilic Fungi: A Tool for White Biotechnology

  • Chapter
  • First Online:
Recent Advancement in White Biotechnology Through Fungi

Part of the book series: Fungal Biology ((FUNGBIO))

  • 1984 Accesses

Abstract

Proteases are enzymes that degrade proteinaceous materials and find applications in detergents, leather, food, agriculture, pharmaceuticals, and bioremediation. They are produced by plants, animals, fungi, and bacteria. Among all, fungi produce acidic, neutral, and alkaline proteases, whereas bacteria produce only alkaline and neutral proteases. Despite the availability of microbial proteases in huge amounts, less number of proteases has been commercialized due to high cost and less stability to withstand harsh conditions in industrial processes. To meet the industrial demand, proteases have been engineered using genomic tools including recombinant DNA technology, site-directed mutagenesis, codon optimization, and nucleotide shuffling for enhanced expression. On the other hand, fungi living in extreme habitats have gained considerable importance for producing efficient proteases which can easily withstand conditions applied in industrial processes. Moreover, the downstream processing and recovery of fungal proteases is easy and cost-effective which is a major obstacle in industrial processes. Therefore, fungal proteases have high industrial demand due to stability and catalytic activity, broad diversity, and substrate specificity required in various bioengineering and biotechnological applications. This chapter illustrates type of proteases and their sources, characteristic properties, and their engineering for various biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott RJ, Marzluf GA (1984) Major extracellular protease of Neurospora crassa. J Bacteriol 159:505–510

    Google Scholar 

  • Abidi F, Chobert J-M, Haertlé T, Marzouki MN (2011) Purification and biochemical characterization of stable alkaline protease Prot-2 from Botrytis cinerea. Process Biochem 46:2301–2310

    Google Scholar 

  • Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomolecules 4:117–139

    Google Scholar 

  • Aissaoui N, Chobert JM, Haertle T, Marzouki MN, Abidi F (2017) Purification and biochemical characterization of a neutral serine protease from Trichoderma harzianum. Use in antibacterial peptide production from a fish by-product hydrolysate. Appl Biochem Biotechnol 182(2):831–845

    Google Scholar 

  • Anandan D, Marmer WN, Dudley RL (2007) Isolation, characterization and optimization of culture parameters for production of an alkaline protease isolated from Aspergillus tamarii. J Ind Microbiol Biotechnol 34(5):339–347

    Google Scholar 

  • Banerjee G, Ray AK (2017) Impact of microbial proteases on biotechnological industries. Biotechnol Genet Eng Rev 8725:1–25

    Google Scholar 

  • Barzkar N, Homaei A, Hemmati R, Patel S (2018) Thermostable marine microbial proteases for industrial applications: scopes and risks. Extremophiles 22(3):335–346

    Google Scholar 

  • Bertemont R, Gerday C (2011) The extremophiles comprehensive biotechnology, 2nd edn, pp 229–242

    Google Scholar 

  • Brenner S (1988) The molecular evolution of genes and proteins: a tale of two serines. Nature 334:528–530

    Google Scholar 

  • Broady PA, Weinstein RN (1998) Algae, lichens and fungi in La Gorce Mountains, Antarctica. Antarct Sci 10(04):376–385

    Google Scholar 

  • Brock TD (1995) The road to Yellowstone—and beyond. Annu Rev Microbiol 49:1–28

    Google Scholar 

  • Cao L, Tan H, Liu Y, Xue X, Zhou S (2008) Characterization of a new keratinolytic Trichoderma atroviride strain F6 that completely degrades native chicken feather. Lett Appl Microbiol 46(3):389–394

    Google Scholar 

  • Castro-Ochoa D, Pera-Montes C, Farres A (2013) Evaluation of Strategies to Improve the Production of Alkaline Protease PrtA from Aspergillus nidulans. Appl Biochem Biotechnol 169:1672–1682

    Google Scholar 

  • Chambergo FS, Valencia EY (2016) Fungal biodiversity to biotechnology. Appl Microbiol Biotechnol 100(6):2567–2577

    Google Scholar 

  • Chellappan S, Jasmin C, Basheer SM, Kishore A, Elyas KK, Bhat SG, Chandrasekaran M (2011) Characterization of an extracellular alkaline serine protease from marine Engyodontium album BTMFS10. J Ind Microbiol Biotechnol 38(6):743–752

    Google Scholar 

  • Chen XG, Stabnikova O, Tay JH, Wang JY, Tay STL (2004) Thermoactive extracellular proteases of Geobacillus caldoproteolyticus, sp. nov., from sewage sludge. Extremophiles 8:489–498

    Google Scholar 

  • Choudhuri S (2014) Phylogenetic analysis. In: Bioinformatics for beginners-genes, genomes, molecular evolution, databases and analytical tools. Academic Press, London, pp 209–218

    Google Scholar 

  • da Silva RR, de Oliveira LCG, Juliano MA, Juliano L, de Oliveira AHC, Rosa JC, Cabral H (2017) Biochemical and milk-clotting properties and mapping of catalytic subsites of an extracellular aspartic peptidase from basidiomycete fungus Phanerochaete chrysosporium. Food Chem 225:45–54

    Google Scholar 

  • Dalmaso GZL, Ferreira D, Vermelho AB (2015) Marine extremophiles: a source of hydrolases for biotechnological applications. Mar Drugs 13:1925–1965

    Google Scholar 

  • Damare S, Raghukumar C, Muraleedharan UD, Raghukumar S (2006a) Deep-sea fungi as a source of alkaline and cold-tolerant proteases. Enzyme Microb Technol 39:172–181

    Google Scholar 

  • Damare S, Raghukumar C, Raghukumar S (2006b) Fungi in deep-sea sediments of the Central Indian Basin. Deep-Sea Res 53:14–27

    Google Scholar 

  • de Albuquerque WMC, Wanderley Duarte Neto JM, Campos Albuquerque WW, de Araújo Viana Marques D, de Albuquerque LC, da Cruz Silvério SI et al (2017) Purification and characterization of a collagenase from Penicillium sp. UCP 1286 by polyethylene glycol-phosphate aqueous two-phase system. Protein Expr Purif 133:8–14

    Google Scholar 

  • de Silva TAS, Knob A, Tremacoldi CR, Brochetto-Braga MR, Carmona EC (2011) Purification and some properties of an extracellular acid protease from Aspergillus clavatus. World J Microbiol Biotechnol 27(11):2491–2497

    Google Scholar 

  • de Souza PM, Bittencourt MLA, Caprara CC, de Freitas M, Almeida RPC, Silveira D, Fonseca YM, Filho EXF, Junior AP, Magalhães PO (2015) A biotechnology perspective of fungal proteases. Braz J Microbiol 46(2):337–346

    Google Scholar 

  • Deshmukh R, Khardenavis AA, Purohit HJ (2016) Diverse metabolic capacities of fungi for bioremediation. Indian J Microbiol 56(3):247–264

    Google Scholar 

  • Deverall BJ (1968) Psychrophiles. In: Ainsworth GC, Sussman AS (eds) The fungi an advanced treatise. Academic Press, New York, pp 129–135

    Google Scholar 

  • Di Pietro A, Huertas-Gonzalez MD, Gutierrez-Corona JF, Martinez-Cadena G, Meglecz E, Roncero MI (2001) Molecular characterization of a subtilase from the vascular wilt fungus Fusarium oxysporum. Mol Plant Microbe Interact 14:653–662

    Google Scholar 

  • Dozie INS, Okeke CN, Unaeze NC (1994) A thermostable, alkaline-active, keratinolytic proteinase from Chrysosporium keratinophilum. World J Microbiol Biotechnol 10:563–567

    Google Scholar 

  • Duarte AWF, dos Santos JA, Vianna MV, Vieira JMF, Mallagutti VH, Inforsato FJ et al (2018) Cold-adapted enzymes produced by fungi from terrestrial and marine Antarctic environments. Crit Rev Biotechnol 38(4):600–619

    Google Scholar 

  • Ellaiah P, Srinivasulu B, Adinarayana K (2002) A review on microbial alkaline proteases. J Sci Ind Res 61(9):690–704

    Google Scholar 

  • Erez E, Fass D, Bibi E (2009) How intramembrane proteases bury hydrolytic reactions in the membrane. Nature 459:371–378

    Google Scholar 

  • Gaba S, Singh RN, Abrol S, Yadav AN, Saxena AK, Kaushik R (2017) Draft genome sequence of Halolamina pelagica CDK2 isolated from natural salterns from Rann of Kutch, Gujarat, India. Genome Announc 5:1–2

    Google Scholar 

  • Gavrilescu M, Chisti Y (2005) Biotechnology-a sustainable alternative for chemical industry. Biotechnol Adv 23(7–8):471–499

    Google Scholar 

  • Golubev WI (1998) New species of basidiomycetous yeasts, Rhodotorula creatinovora and Rhodotorula yakutica, isolated from permafrost soils of Eastern-Siberian Arctic. Mykolo I Phytopathol 32:8–13

    Google Scholar 

  • Gomaa EZ (2013) Optimization and characterization of alkaline protease and carboxymethyl-cellulase produced by Bacillus pumilus grown on Ficus nitida wastes. Braz J Microbiol 44(2):529–537

    Google Scholar 

  • Gomi K, Arikawa K, Kamiya N, Kitamoto K, Kumagai C (1993) Cloning and nucleotide sequence of the acid protease encoding gene (pepA) from Aspergillus oryzae. Biosci Biotechnol Biochem 57:1095–1100

    Google Scholar 

  • Gupta R, Beg Q, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59(1):15–32

    Google Scholar 

  • Hajji M, Kanoun S, Nasri M, Gharsallah N (2007) Purification and characterization of an alkaline serine-protease produced by a new isolated Aspergillus clavatus ES1. Process Biochem 42(5):791–797

    Google Scholar 

  • Hajji M, Hmidet N, Jellouli K, Vallaeys T, Nasri M, Sellami-Kamoun A (2010) Gene cloning and expression of a detergent stable alkaline protease from Aspergillus clavatus ES1. Process Biochem 45:1746–1752

    Google Scholar 

  • Hamada S, Kubota K, Sagisaka M (2017) Purification and characterization of a novel extracellular neutral metalloprotease from Cerrena albocinnamomea. J Gen Appl Microbiol 63(1):51–57

    Google Scholar 

  • Hassan N, Rafiq M, Hayat M, Shah AA, Hasan F (2016) Psychrophilic and psychrotrophic fungi: a comprehensive review. Rev Environ Sci Biotechnol 15(2):147–172

    Google Scholar 

  • Heredia-Sandoval NG, Valencia-Tapia MY, de la Barca AMC, Islas-Rubio AR (2016) Microbial proteases in baked goods: modification of gluten and effects on immunogenicity and product quality. Foods 30:E59

    Google Scholar 

  • Hu QX, Zhang GQ, Zhang RY, Hu DD, Wang HX, Ng TB (2012) A novel aspartic protease with HIV-1 reverse transcriptase inhibitory activity from fresh fruiting bodies of the wild mushroom Xylaria hypoxylon. J Biomed Biotechnol 2012:8

    Google Scholar 

  • Ikegaya K, Ishida Y, Murakami K, Masaki A, Sugio N, Takechi K, Murakami S, Tatsumi H, Ogawa Y, Nakano E, Motai H, Kawabe H (1992) Enhancement of the thermostability of the alkaline protease from Aspergillus oryzae by introduction of a disulfide bond. Biosci Biotechnol Biochem 56:326–327

    Google Scholar 

  • Inacio FD, Ferreira RO, Araujo CAV, De Brugnari T, Castoldi R, Peralta RM, de Souza CGM (2015) Proteases of wood rot fungi with emphasis on the genus Pleurotus. BioMed Res Int 2015:10

    Google Scholar 

  • Isogai T, Fukagawa M, Kojo H, Kohsaka M, Aoki H, Imanaka H (1991) Cloning and nucleotide sequences of the complementary and genomic DNAs for the alkaline protease from Acremonium chrysogenum. Agric Biol Chem 55:471–477

    Google Scholar 

  • Jaeger KE, Eggert T, Eipper A, Reetz MT (2001) Directed evolution and the creation of enantioselective biocatalysis. Appl Microbiol Biotechnol 55:519–530

    Google Scholar 

  • Johnvesly B, Naik GR (2001) Studies on production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus sp. J99 in a chemically defined medium. Process Biochem 37:139–144

    Google Scholar 

  • Katsuya G, Kenji A, Naokata K, Katsuhiko K, Chieko K (1993) Cloning and nucleotide sequence of the acid protease-encoding gene (pepA) from Aspergillus oryzae. Biosci Biotechnol Biochem 57:1095–1100

    Google Scholar 

  • Kim T, Lei XG (2005) Expression and characterization of a thermostable serine protease (TfpA) from Thermomonospora fusca YX in Pichia pastoris. Appl Microbiol Biotechnol 68:355–359

    Google Scholar 

  • Kredics L, Antal Z, Szekeres A, Hatvani L, Manczinger L, Vágvölgyi C, Nagy E (2005) Extracellular proteases of Trichoderma species. A review. Acta Microbiol Immunol Hung 52(2):169–184

    Google Scholar 

  • Kumar M, Yadav AN, Tiwari R, Prasanna R, Saxena AK (2014) Evaluating the diversity of culturable thermotolerant bacteria from four hot springs of India. J Biodivers Biopros Dev 1:1–9

    Google Scholar 

  • Kumar K, Yadav AN, Kumar V, Vyas P, Dhaliwal HS (2017) Food waste: a potential bioresource for extraction of nutraceuticals and bioactive compounds. Bioresour Bioprocess 4:18. https://doi.org/10.1186/s40643-017-0148-6

    Google Scholar 

  • Laxman RS, Sonawane AP, More SV et al (2005) Optimization and scale up of production of alkaline protease from Conidiobolus coronatus. Process Biochem 40:3152–3158

    Google Scholar 

  • Li AN, Li DC (2009) Cloning, expression and characterization of the serine protease gene from Chaetomium thermophilum. J Appl Microbiol 106(2):369–380

    Google Scholar 

  • Li AN, Xie C, Zhang J, Zhang J, Li DC (2011) Cloning, expression, and characterization of serine protease from thermophilic fungus Thermoascus aurantiacus var. levisporus. J Microbiol 49(1):121–129

    Google Scholar 

  • Li Q, Yi L, Marek P, Iverson BL (2013) Commercial proteases: present and future. FEBS Lett 587:1155–1163

    Google Scholar 

  • Liu Y, Yang Q (2007) Cloning and heterologous expression of aspartic protease SA76 related to biocontrol in Trichoderma harzianum. FEMS Microbiol Lett 277:173–181

    Google Scholar 

  • Ma L, Catranis CM, Starmer WT, Rogers SO (1999) Revival and characterization of fungi from ancient polar ice. Mycologist 13:70–73

    Google Scholar 

  • Maheshwari R, Bharadwaj G, Bhat MK (2000) Thermophilic Fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64(3):461–488

    Google Scholar 

  • Maheswari R (2005) Fungal biology in the 21st century. Curr Sci 88:1406–1418

    Google Scholar 

  • Majumder R, Banik SP, Khowala S (2015) Purification and characterisation of κ-casein specific milk-clotting metalloprotease from Termitomyces clypeatus MTCC 5091. Food Chem 173:441–448

    Google Scholar 

  • Malathi S, Chakraborty R (1991) Production of alkaline protease by a new Aspergillus flavus isolate under solid-substrate fermentation conditions for use as a depilation agent. Appl Environ Microbiol 57:712–716

    Google Scholar 

  • Mandujano-González V, Arana-Cuenca A, Anducho-Reyes MÁ, Téllez-Jurado A, González-Becerra AE, Mercado-Flores Y (2013) Biochemical study of the extracellular aspartyl protease Eap1 from the phytopathogen fungus Sporisorium reilianum. Protein Expr Purif 92(2):214–222

    Google Scholar 

  • More SS, Sridhar DL, Prakash SN, Vishwakarma J, Umashankar S (2013) Purification and properties of a novel fungal alkaline keratinase from Cunninghamella echinulata. Turk Biyokim Derg 38(1):68–74

    Google Scholar 

  • Murao S, Oda K, Matsushita Y (1973) Isolation and identification of a microorganism which produces non Streptomyces pepsin inhibitor and N-diazoacetyl-DL-norleucine methylester sensitive acid proteases. Agric Biol Chem 37:1417–1421

    Google Scholar 

  • Nakamura M, Iketani A, Shioi Y (2011) A survey of proteases in edible mushrooms with synthetic peptides as substrates. Mycoscience 52(4):234–241

    Google Scholar 

  • Nascimento TP, Sales AE, Porto CS, Brandao RMP, de Campos-Takaki GM, Teixeira JAC et al (2016) Purification of a fibrinolytic protease from Mucor subtilissimus UCP 1262 by aqueous two-phase systems (PEG/sulfate). J Chromatogr B Analyt Technol Biomed Life Sci 1025:16–24

    Google Scholar 

  • Neklyudov AD, Ivankin AN, Berdutina AV (2000) Properties and uses of protein hydrolysates (review). Appl Biochem Microb 36:452–459

    Google Scholar 

  • Niyonzima FN, More S (2014) Purification and properties of detergent-compatible extracellular alkaline protease from Scopulariopsis spp. Prep Biochem Biotechnol 44(7):738–759

    Google Scholar 

  • Niyonzima FN, More SS (2015) Purification and characterization of detergent-compatible protease from Aspergillus terreus gr. 3 Biotech 5(1):61–70

    Google Scholar 

  • Novelli PK, Barros MM, Fleuri LF (2016) Novel inexpensive fungi proteases: production by solid state fermentation and characterization. Food Chem 198:119–124

    Google Scholar 

  • Ogawa Y, Tatsumi H, Murakami S, Ishida Y, Murakami K, Masaki A, Kawabe H, Arimura H, Nakano E, Motai H, Tohe A (1990) Secretion of Aspergillus oryzae alkaline protease in an osmophilic yeast, Zygosaccharomyces rouxii. Agric Biol Chem 54:2521–2529

    Google Scholar 

  • Omrane Benmrad M, Moujehed E, Ben Elhoul M, Zaraî Jaouadi N, Mechri S, Rekik H et al (2016) A novel organic solvent- and detergent-stable serine alkaline protease from Trametes cingulata strain CTM10101. Int J Biol Macromol 91:961–972

    Google Scholar 

  • Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25:221–231

    Google Scholar 

  • Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62(3):597–635

    Google Scholar 

  • Rawlings ND, Morton FR, Kok CY, Kong J, Barrett AJ (2008) MEROPS: the peptidase database. Nucleic Acids Res 36:D320–D325

    Google Scholar 

  • Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A, Finn RD (2018) The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res 46:D624–D632

    Google Scholar 

  • Ridout CJ, Coley-Smith JR, Lynch JM (1988) Fractionation of extracellular enzymes from a mycoparasitic strain of Trichoderma harzianum. Enzyme Microb Technol 10:180–187

    Google Scholar 

  • Sabotic J, Trcek T, Popovic T, Brzin J (2007) Basidiomycetes harbour a hidden treasure of proteolytic diversity. J Biotechnol 128(2):297–307

    Google Scholar 

  • Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK (2017) Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech 7:1–11

    Google Scholar 

  • Salwan R, Gulati A, Kasana RC (2010) Phylogenetic diversity of alkaline protease-producing psychrotrophic bacteria from glacier and cold environments of Lahaul and Spiti. India J Basic Microbiol 50:150–159

    Google Scholar 

  • Salwan R, Sharma V, Pal M, Kasana RC, Yadav SK, Gulati A (2018) Heterologous expression and structure-function relationship of low-temperature and alkaline active protease from Acinetobacter sp. IHB B 5011 (MN12). Int J Biol Macromol 107(Pt A):567–574

    Google Scholar 

  • Samal B, Karan B, Boone TC, Chen KK, Rahde MF, Stabinsky Y (1989) Cloning and expression of the gene encoding a novel proteinase from Tritirachium album Limber. Gene 85:329–333

    Google Scholar 

  • Sandhya C, Sumantha A, Szakacs G, Pandey A (2005) Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochem 40(8):2689–2694

    Google Scholar 

  • Savitha S, Sadhasivam S, Swaminathan K, Lin FH (2011) Fungal protease: production, purification and compatibility with laundry detergents and their wash performance. J Taiwan Inst Chem Eng 42(2):298–304

    Google Scholar 

  • Saxena AK, Yadav AN, Kaushik R, Tyagi S, Kumar M, Prasanna R, Shukla L (2014) Use of microbes from extreme environments for the benefits of agriculture. In: Afro-Asian Congress on microbes for human & environmental health. doi: https://doi.org/10.13140/RG.2.1.3479.1841

  • Saxena AK, Yadav AN, Kaushik R, Tyagi SP, Shukla L (2015) Biotechnological applications of microbes isolated from cold environments in agriculture and allied sectors. In: International Conference on “Low Temperature Science and Biotechnological Advances”, Society of low temperature biology, p 104. doi:https://doi.org/10.13140/RG.2.1.2853.5202

  • Saxena AK, Yadav AN, Rajawat M, Kaushik R, Kumar R, Kumar M, Prasanna R, Shukla L (2016) Microbial diversity of extreme regions: an unseen heritage and wealth. Indian J Plant Genet Resour 29:246–248

    Google Scholar 

  • Shaba AM, Baba J (2012) Screening of Pleurotus ostreatus and Gloeophyllum sepiarium strains for extracellular protease enzyme production. BAJOPAS 2012(5):187–190

    Google Scholar 

  • Shankar S, Laxman RS (2015) Biophysicochemical characterization of an alkaline protease from Beauveria sp. MTCC 5184 with multiple applications. Appl Biochem Biotechnol 175(1):589–602

    Google Scholar 

  • Sharma N, De K (2011) Production, purification and crystallization of an alkaline protease from Aspergillus tamari [EF661565.1]. ABJNA 2(7):1135–1142

    Google Scholar 

  • Sharma V, Salwan R, Sharma PN (2016) Differential response of extracellular proteases of Trichoderma harzianum against fungal phytopathogens. Curr Microbiol 73:419–425

    Google Scholar 

  • Shen HD, Wang CW, Lin WL, Lai HY, Tam MF, Chou H, Wang SR, Han SH (2001) cDNA cloning and immunologic characterization of Peno18, the vacuolar serine protease major allergen of Penicillium oxalicum. J Lab Clin Med 137:115–124

    Google Scholar 

  • Sims AH, Dunn-Coleman NS, Robson GD, Oliver SG (2004) Glutamic protease distribution is limited to filamentous fungi. FEMS Microbiol Lett 239:95–101

    Google Scholar 

  • Souza PM, Bittencourt MLA, Caprara CC, de Freitas M, de Almeida RPC, Silveira D et al (2015) A biotechnology perspective of fungal proteases. Braz J Microbiol 46:337–346

    Google Scholar 

  • Souza PM, Werneck G, Aliakbarian B, Siqueira F, Ferreira Filho EX, Perego P et al (2017) Production, purification and characterization of an aspartic protease from Aspergillus foetidus. Food Chem Toxicol 109:1103–1110

    Google Scholar 

  • Sri Lakshmi J, Madhavi J, Lavanya S, Ammani K (2015) Commercial potential of fungal protease: past, present and future prospects. J Pharm Chem Biol Sci 2(4):218–234

    Google Scholar 

  • Suman A, Verma P, Yadav AN, Saxena AK (2015) Bioprospecting for extracellular hydrolytic enzymes from culturable thermotolerant bacteria isolated from Manikaran thermal springs. Res J Biotechnol 10:33–42

    Google Scholar 

  • Sun Q, Chen F, Geng F, Luo Y, Gong S, Jiang Z (2018) A novel aspartic protease from Rhizomucor miehei expressed in Pichia pastoris and its application on meat tenderization and preparation of turtle peptides. Food Chem 245:570–577

    Google Scholar 

  • Tojo M, Newsham KK (2012) Snow moulds in polar environments. Fungal Ecol 5:379–480

    Google Scholar 

  • Trincone A (2013) Marine enzymes for biocatalysis. Woodhead Publishing, Cambridge

    Google Scholar 

  • Tsiatsiani L, Akeroyd M, Olsthoorn M, Heck AJR (2017) Aspergillus niger prolyl endoprotease for hydrogen−deuterium exchange mass spectrometry and protein structural studies. Anal Chem 89:7966–7973

    Google Scholar 

  • Turchetti B, Buzzini P, Goretti M, Branda E, Diolaiuti G, D’Agata C et al (2008) Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microb Ecol 63:73–83

    Google Scholar 

  • Verma P, Yadav AN, Shukla L, Saxena AK, Suman A (2015) Hydrolytic enzymes production by thermotolerant Bacillus altitudinis IARI-MB-9 and Gulbenkiania mobilis IARI-MB-18 isolated from Manikaran hot springs. Int J Adv Res 3:1241–1250

    Google Scholar 

  • Vickers I, Reeves EP, Kavanagh KA, Doyle S (2007) Isolation, activity and immunological characterisation of a secreted aspartic protease, CtsD, from Aspergillus fumigatus. Protein Expr Purif 53:216–224

    Google Scholar 

  • Yadav AN (2015) Bacterial diversity of cold deserts and mining of genes for low temperature tolerance. Ph.D. Thesis, IARI, New Delhi/BIT, Ranchi pp. 234, doi: https://doi.org/10.13140/RG.2.1.2948.1283/2

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2015a) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119:683–693

    Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015b) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31:95–108

    Google Scholar 

  • Yadav AN, Sharma D, Gulati S, Singh S, Kaushik R, Dey R, Pal KK, Saxena AK (2015c) Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep 5. https://doi.org/10.1038/srep12293

  • Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307

    Google Scholar 

  • Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018) Biodiversity of the Genus Penicillium in Different Habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18. https://doi.org/10.1016/B978-0-444-63501-3.00001-6

    Google Scholar 

  • Yao W, Zhu J, Sun B, Miller C (2009) Development and optimization of a culture medium for L-lactic acid production by Rhizopus oryzae using crude protein from dairy manure as a nitrogen source. J Environ Sci Health A 44(12):1306–1313

    Google Scholar 

  • Zambare V, Nilegaonkar S, Kanekar P (2011) A novel extracellular protease from Pseudomonas aeruginosa MCM B-327: enzyme production and its partial characterization. N Biotechnol 28:173–181

    Google Scholar 

  • Zheng S, Wan H, Zhang G (2011) A novel alkaline protease from wild edible mushroom Termitomyces albuminosus. Acta Biochim Pol 58(2):269–273

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to SEED Division, DST, for financial support under the project SP/YO/125/2017. The authors also acknowledge UCRD, Chandigarh University, for providing necessary infrastructure.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salwan, R., Sharma, V. (2019). Proteases from Extremophilic Fungi: A Tool for White Biotechnology. In: Yadav, A., Mishra, S., Singh, S., Gupta, A. (eds) Recent Advancement in White Biotechnology Through Fungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-10480-1_9

Download citation

Publish with us

Policies and ethics