Skip to main content

Mycorrhizal Fungi: Biodiversity, Ecological Significance, and Industrial Applications

  • Chapter
  • First Online:
Recent Advancement in White Biotechnology Through Fungi

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Mycorrhizae (“fungus roots”) are mutualistic symbiotic associations between fungi and plants. Mycorrhizal association was found to be established between Ordovician and Devonian period. Mycorrhizal association is present in almost all ecosystems with a high degree of host specificity. About 40,000–50,000 fungal species form mycorrhizal association with nearly about 250,000 plant species. There are different types of mycorrhizal associations, namely, arbuscular mycorrhiza (71%), ectomycorrhiza (2%), orchid mycorrhiza (10%), ericoid mycorrhiza (1.4%), non-mycorrhizal association (7%), and habitat- and nutritional-dependent association (8%). These symbiotic associations play a key role in evolution of land plants in reducing and harsh environment at that time. These symbiotic associations provide up to 80% of N and P and also help in plant growth and fitness. There are a number of scientific evidences which have suggested that mycorrhizal fungi not only improve crop yield but also increase antioxidants, vitamins, and essential trace elements in plants. Additionally, various researchers around the globe have investigated the effect of mycorrhizal fungi on production of secondary metabolites. Furthermore, application of mycorrhizal fungi is presently reaching to an industrial stage supported by widespread applied researches and marketable applications emphasizing an eco-friendly and sustainable aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama K, Hayashi H (2002) Arbuscular mycorrhizal fungus-promoted accumulation of two new triterpenoids in cucumber roots. Biosci Biotechnol Biochem 66:762–769

    Google Scholar 

  • Albrechtova J, Latr A, Nedorost L, Pokluda R, Posta K, Vosatka M (2012) Dual inoculation with mycorrhizal and saprotrophic fungi applicable in sustainable cultivation improves the yield and nutritive value of onion. Sci World J 2012:1. https://doi.org/10.1100/2012/374091

    Google Scholar 

  • Alghamdi SA (2017) Influence of mycorrhizal fungi on seed germination and growth in terrestrial and epiphytic orchids. Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2017.10.021

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Google Scholar 

  • Augé RM, Moore JL (2005) Arbuscular mycorrhizal symbiosis and plant drought resistance. Mycorrhiza: role and applications. Allied Publishers Limited, New Delhi, pp 136–157

    Google Scholar 

  • Bargagli R, Baldi F (1984) Mercury and methyl mercury in higher fungi and their relation with the substrata in a cinnabar mining area. Chemosphere 13(9):1059–1071

    Google Scholar 

  • Baslam M, Goicoechea N (2012) Water deficit improved the capacity of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of antioxidant compounds in lettuce leaves. Mycorrhiza 22(5):347–359

    Google Scholar 

  • Bender SF, Conen F, Van der Heijden MG (2015) Mycorrhizal effects on nutrient cycling, nutrient leaching and N2O production in experimental grassland. Soil Biol Biochem 80:283–292

    Google Scholar 

  • Bennett AE, Bever JD, Bowers MD (2009) Arbuscular mycorrhizal fungal species suppress inducible plant responses and alter defensive strategies following herbivory. Oecologia 160(4):771–779

    Google Scholar 

  • Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manag 105:103–120

    Google Scholar 

  • Blackwell M (2011) The Fungi: 1, 2, 3 … 5.1 million species? Am J Bot 98(3):426–438

    Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48

    Google Scholar 

  • Bonfante P, Selosse MA (2010) A glimpse into the past of land plants and of their mycorrhizal affairs: from fossils to evo-devo. New Phytol 186(2):267–270

    Google Scholar 

  • Bradley R, Burt AJ, Read DJ (1982) The biology of mycorrhiza in the Ericaceae. New Phytol 91(2):197–209

    Google Scholar 

  • Bruisson S, Maillot P, Schellenbaum P, Walter B, Gindro K, Deglène-Benbrahim L (2016) Arbuscular mycorrhizal symbiosis stimulates key genes of the phenylpropanoid biosynthesis and stilbenoid production in grapevine leaves in response to downy mildew and grey mould infection. Phytochemistry 131:92–99

    Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154(2):275–304

    Google Scholar 

  • Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320(1–2):37–77

    Google Scholar 

  • Brundrett MC (2017) Global diversity and importance of mycorrhizal and nonmycorrhizal plants. In: Biogeography of mycorrhizal symbiosis. Springer, Cham, pp 533–556

    Google Scholar 

  • Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 220:1108

    Google Scholar 

  • Bücking H, Heyser W (1999) Elemental composition and function of polyphosphates in ectomycorrhizal fungi–an X-ray microanalytical study. Mycol Res 103(1):31–39

    Google Scholar 

  • Cairney J, Burke RM (1998) Extracellular enzyme activities of the ericoid mycorrhizal endophyte: their likely roles in decomposition of dead plant tissue in soil hymenoscyphus ericae: their likely roles in decomposition of dead plant tissue in soil (read) Korf & Kernan: their likely roles in decomposition of dead plant tissue in soil. Plant Soil 205(2):181–192

    Google Scholar 

  • Candelone JP, Hong S, Pellone C, Boutron CF (1995) Post-Industrial Revolution changes in large-scale atmospheric pollution of the northern hemisphere by heavy metals as documented in central Greenland snow and ice. J Geophys Res Atmos 100(D8):16605–16616

    Google Scholar 

  • Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23(7):867–902

    Google Scholar 

  • Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Lindahl BD (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339(6127):1615–1618

    Google Scholar 

  • Cosme M, Franken P, Mewis I, Baldermann S, Wurst S (2014) Arbuscular mycorrhizal fungi affect glucosinolate and mineral element composition in leaves of Moringa oleifera. Mycorrhiza 24(7):565–570

    Google Scholar 

  • Cullings KW (1996) Single phylogenetic origin of ericoid mycorrhizae within the Ericaceae. Can J Bot 74(12):1896–1909

    Google Scholar 

  • Davey ML, Currah RS (2006) Interactions between mosses (Bryophyta) and fungi. Botany 84(10):1509–1519

    Google Scholar 

  • Dickie IA, Bolstridge N, Cooper JA, Peltzer DA (2010) Co-invasion by Pinus and its mycorrhizal fungi. New Phytol 187(2):475–484

    Google Scholar 

  • Dickson S (2004) The Arum–Paris continuum of mycorrhizal symbioses. New Phytol 163(1):187–200

    Google Scholar 

  • Dighton J (2016) Fungi in ecosystem processes, vol 31. 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Dotzler N, Walker C, Krings M, Hass H, Kerp H, Taylor TN, Agerer R (2009) Acaulosporoid glomeromycotan spores with a germination shield from the 400-million-year-old Rhynie chert. Mycol Prog 8(1):9–18

    Google Scholar 

  • Egerton-Warburton L, Allen MF (2001) Endo-and ectomycorrhizas in Quercus agrifolia Nee. (Fagaceae): patterns of root colonization and effects on seedling growth. Mycorrhiza 11(6):283–290

    Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104(7):1263–1280

    Google Scholar 

  • Feng G, Zhang F, Li X, Tian C, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12(4):185–190

    Google Scholar 

  • Finlay RD, Ek H, Odham G, Söderström B (1988) Mycelial uptake, translocation and assimilation of nitrogen from 15N-labelled ammonium by Pinus sylvestris plants infected with four different ectomycorrhizal fungi. New Phytol 110(1):59–66

    Google Scholar 

  • Frank B (1885) Ueber die auf Wurzelsymbiose beruhende Ernahrung gewisser Baume durch unterirdische Pilze. Ber. Dt. Bot Ges 3:128–145

    Google Scholar 

  • Gachomo E, Allen JW, Pfeffer PE, Govindarajulu M, Douds DD, Jin H, Bücking H (2009) Germinating spores of Glomus intraradices can use internal and exogenous nitrogen sources for de novo biosynthesis of amino acids. New Phytol 184(2):399–411

    Google Scholar 

  • Gast CH, Jansen E, Bierling J, Haanstra L (1988) Heavy metals in mushrooms and their relationship with soil characteristics. Chemosphere 17(4):789–799

    Google Scholar 

  • Gemma JN, Koske RE, Flynn T (1992) Mycorrhizae in Hawaiian pteridophytes: occurrence and evolutionary significance. Am J Bot 79(8):843–852

    Google Scholar 

  • Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20(8):519–530

    Google Scholar 

  • Giron D, Frago E, Glevarec G, Pieterse CM, Dicke M (2013) Cytokinins as key regulators in plant–microbe–insect interactions: connecting plant growth and defence. Funct Ecol 27(3):599–609

    Google Scholar 

  • Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223(6):1115–1122

    Google Scholar 

  • Grunwald U, Guo W, Fischer K, Isayenkov S, Ludwig-Müller J, Hause B, Franken P (2009) Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormone-treated Medicago truncatula roots. Planta 229(5):1023–1034

    Google Scholar 

  • Hawkins HJ, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226(2):275–285

    Google Scholar 

  • Hazzoumi Z, Moustakime Y, Joutei KA (2015) Effect of arbuscular mycorrhizal fungi (AMF) and water stress on growth, phenolic compounds, glandular hairs, and yield of essential oil in basil (Ocimum gratissimum L). Chem Biol Technol Agric 2(1):10

    Google Scholar 

  • Helgason T, Fitter A (2005) The ecology and evolution of the arbuscular mycorrhizal fungi. Mycologist 19(3):96–101

    Google Scholar 

  • Hibbett DS, Matheny PB (2009) The relative ages of ectomycorrhizal mushrooms and their plant hosts estimated using Bayesian relaxed molecular clock analyses. BMC Biol 7(1):13

    Google Scholar 

  • Hijikata N, Murase M, Tani C, Ohtomo R, Osaki M, Ezawa T (2010) Polyphosphate has a central role in the rapid and massive accumulation of phosphorus in extraradical mycelium of an arbuscular mycorrhizal fungus. New Phytol 186(2):285–289

    Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68(1):139–146

    Google Scholar 

  • Hobbie EA, Hobbie JE (2008) Natural abundance of 15 N in nitrogen-limited forests and tundra can estimate nitrogen cycling through mycorrhizal fungi: a review. Ecosystems 11(5):815

    Google Scholar 

  • Hodge A, Storer K (2015) Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant Soil 386(1–2):1–19

    Google Scholar 

  • Jacobson KM, Jacobson PJ, Miller OK (1993) The mycorrhizal status of Welwitschia mirabilis. Mycorrhiza 3(1):13–17

    Google Scholar 

  • Javelle A, Morel M, Rodríguez-Pastrana BR, Botton B, André B, Marini AM, Chalot M (2003) Molecular characterization, function and regulation of ammonium transporters (Amt) and ammonium-metabolizing enzymes (GS, NADP-GDH) in the ectomycorrhizal fungus Hebeloma cylindrosporum. Mol Microbiol 47(2):411–430

    Google Scholar 

  • Jin H, Pfeffer PE, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y (2005) The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol 168(3):687–696

    Google Scholar 

  • Johnson D, Leake JR, Read DJ (2002) Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland: short-term respiratory losses and accumulation of 14C. Soil Biol Biochem 34(10):1521–1524

    Google Scholar 

  • Kapoor R, Chaudhary V, Bhatnagar AK (2007) Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza 17(7):581

    Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2002) Glomus macrocarpum: a potential bioinoculant to improve essential oil quality and concentration in Dill (Anethum graveolens L.) and Carum (Trachyspermum ammi (Linn.) Sprague). World J Microbiol Biotechnol 18(5):459–463

    Google Scholar 

  • Kapoor R, Sharma D, Bhatnagar AK (2008) Arbuscular mycorrhizae in micropropagation systems and their potential applications. Sci Hort 116(3):227–239

    Google Scholar 

  • Kivlin SN, Hawkes CV, Treseder KK (2011) Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol Biochem 43(11):2294–2303

    Google Scholar 

  • Larose G, Chênevert R, Moutoglis P, Gagné S, Piché Y, Vierheilig H (2002) Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. J Plant Physio 159(12):1329–1339

    Google Scholar 

  • Latef AAHA, Chaoxing H (2014) Does inoculation with Glomus mosseae improve salt tolerance in pepper plants? J Plant Growth Regul 33(3):644–653

    Google Scholar 

  • Lehnert M, Kottke I, Setaro S, Pazmiño LF, Suárez JP, Kessler M (2009) Mycorrhizal associations in ferns from southern Ecuador. Am Fern J 99:292–306

    Google Scholar 

  • Lehnert M, Krug M, Kessler M (2017) A review of symbiotic fungal endophytes in lycophytes and ferns–a global phylogenetic and ecological perspective. Symbiosis 71(2):77–89

    Google Scholar 

  • Lepage BA, Currah RS, Stockey RA, Rothwell GW (1997) Fossil ectomycorrhizae from the Middle Eocene. Am J Bot 84(3):410–412

    Google Scholar 

  • Ligrone R, Carafa A, Lumini E, Bianciotto V, Bonfante P, Duckett JG (2007) Glomeromycotean associations in liverworts: a molecular, cellular, and taxonomic analysis. Am J Bot 94(11):1756–1777

    Google Scholar 

  • Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Högberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173(3):611–620

    Google Scholar 

  • Liu H, Yuan M, Tan S, Yang X, Lan Z, Jiang Q, Jing Y (2015) Enhancement of arbuscular mycorrhizal fungus (Glomus versiforme) on the growth and Cd uptake by Cd-hyperaccumulator Solanum nigrum. Appl Soil Ecol 89:44–49

    Google Scholar 

  • López-Pedrosa A, González-Guerrero M, Valderas A, Azcón-Aguilar C, Ferrol N (2006) Gint AMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. Fungal Genet Biol 43(2):102–110

    Google Scholar 

  • Mäder P, Vierheilig H, Streitwolf-Engel R, Boller T, Frey B, Christie P, Wiemken A (2000) Transport of 15 N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi. New Phytol 146(1):155–161

    Google Scholar 

  • Maeda M (1954) The meaning of mycorrhiza in regard to systematic botany. Kumamoto J Sci Ser B 3:57–84

    Google Scholar 

  • Mandal S, Upadhyay S, Wajid S, Ram M, Jain DC, Singh VP, Kapoor R (2015) Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels. Mycorrhiza 25(5):345–357

    Google Scholar 

  • Mandal S, Evelin H, Giri B, Singh VP, Kapoor R (2013) Arbuscular mycorrhiza enhances the production of stevioside and rebaudioside-A in Stevia rebaudiana via nutritional and non-nutritional mechanisms. Appl Soil Ecol 72:187–194

    Google Scholar 

  • Mathur N, Vyas P, Joshi N, Choudhary K, Purohit DK (1999) Mycorrhiza: A Potent Bioinoculant for Sustainable Agriculture. In: Pathak H, Sharma A (eds) Microbial Technology: The Emerging Era. Lambert Academic Publisher, Germany, pp 230–245

    Google Scholar 

  • McKendrick SL, Leake JR, Taylor DL, Read DJ (2002) Symbiotic germination and development of the myco-heterotrophic orchid Neottia nidus-avis in nature and its requirement for locally distributed Sebacina spp. New Phytol 154(1):233–247

    Google Scholar 

  • Mechri B, Tekaya M, Cheheb H, Attia F, Hammami M (2015) Accumulation of flavonoids and phenolic compounds in olive tree roots in response to mycorrhizal colonization: A possible mechanism for regulation of defense molecules. J Plant Physiol 185:40–43

    Google Scholar 

  • Meier S, Borie F, Bolan N, Cornejo P (2012) Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Crit Rev Environ Sci Tech 42(7):741–775

    Google Scholar 

  • Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29(6):645–653

    Google Scholar 

  • Morandi D (1996) Occurrence of phytoalexins and phenolic compounds in endomycorrhizal interactions, and their potential role in biological control. Plant Soil 185(2):241–251

    Google Scholar 

  • Nadarajah P, Nawawi A (1993) Mycorrhizal status of epiphytes in Malaysian oil palm plantations. Mycorrhiza 4(1):21–25

    Google Scholar 

  • Nebel M, Kreier HP, Peussing M, Weiss M, Kottke I (2004) Symbiotic fungal associations of liverworts are the possible ancestors of mycorrhizae. In: Agerer R, Piepenbring M, Blanz P (eds) Frontiers in basidiomycote mycology. IHW-Verlag, Eching, pp 339–360

    Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1995) Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J Ecol 83:991–1000

    Google Scholar 

  • Nottingham AT, Turner BL, Winter K, van der Heijden MG, Tanner EV (2010) Arbuscular mycorrhizal mycelial respiration in a moist tropical forest. New Phytol 186(4):957–967

    Google Scholar 

  • NUnez MA, Horton TR, Simberloff D (2009) Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90(9):2352–2359

    Google Scholar 

  • Ouahmane L, Revel JC, Hafidi M, Thioulouse J, Prin Y, Galiana A, Duponnois R (2009) Responses of Pinus halepensis growth, soil microbial catabolic functions and phosphate-solubilizing bacteria after rock phosphate amendment and ectomycorrhizal inoculation. Plant Soil 320(1–2):169–179

    Google Scholar 

  • Öpik M, Moora M, Liira J, Zobel M (2006) Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol 94(4):778–790

    Google Scholar 

  • Öpik M, Moora M, Liira J, Kõljalg U, Zobel M, Sen R (2003) Divergent arbuscular mycorrhizal fungal communities colonize roots of Pulsatilla spp. in boreal Scots pine forest and grassland soils. New Phytol 160(3):581–593

    Google Scholar 

  • Öpik M, Davison J, Moora M, Zobel M (2013) DNA-based detection and identification of Glomeromycota: the virtual taxonomy of environmental sequences. Botany 92(2):135–147

    Google Scholar 

  • Peterson RL, Ashford AE, Allaway WG (1985) Vesicular-arbuscular mycorrhizal associations of vascular plants on Heron Island, a Great Barrier Reef coral cay. Aust J Bot 33(6):669–676

    Google Scholar 

  • Pressel S, P'ng KM, Duckett JG (2010) A cryo-scanning electron microscope study of the water relations of the remarkable cell wall in the moss Rhacocarpus purpurascens (Rhacocarpaceae, Bryophyta). Nova Hedwigia 91(3–4):289–299

    Google Scholar 

  • Rapparini F, Llusià J, Peñuelas J (2008) Effect of arbuscular mycorrhizal (AM) colonization on terpene emission and content of Artemisia annua L. Plant Biol 10(1):108–122

    Google Scholar 

  • Rapparini F, Peñuelas J (2014) Mycorrhizal fungi to alleviate drought stress on plant growth. In: Use of Microbes for the Alleviation of Soil Stresses, vol 1. Springer, New York, NY, pp 21–42

    Google Scholar 

  • Rasmussen HN, Whigham DF (2002) Phenology of roots and mycorrhiza in orchid species differing in phototrophic strategy. New Phytol 154(3):797–807

    Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391

    Google Scholar 

  • Read DJ, Duckett JG, Francis R, Ligrone R, Russell A (2000) Symbiotic fungal associations in ‘lower’ land plants. Philos Trans R Soc Lond B: Bio Sci 355(1398):815–831

    Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171(1):41–53

    Google Scholar 

  • Rinaldi AC, Comandini O, Kuyper TW (2008) Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Divers 33:1–45

    Google Scholar 

  • Rivera-Becerril F, Calantzis C, Turnau K, Caussanel JP, Belimov AA, Gianinazzi S, Strasser RJ, Gianinazzi-Pearson V (2002) Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Expt Bot 53(371):1177–1185

    Google Scholar 

  • Ruiz-Sánchez M, Aroca R, Muñoz Y, Polón R, Ruiz-Lozano JM (2010) The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. J Plant physio 167(11):862–869

    Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116(2):447–453

    Google Scholar 

  • Schüepp H, Miller DD, Bodmer M (1987) A new technique for monitoring hyphal growth of vesicular-arbuscular mycorrhizal fungi through soil. Trans Br Mycol Soc 89(4):429–435

    Google Scholar 

  • Schüßler A (2000) Glomus claroideum forms an arbuscular mycorrhiza-like symbiosis with the hornwort Anthoceros punctatus. Mycorrhiza 10(1):15–21

    Google Scholar 

  • Selosse MA, Le Tacon F (1998) The land flora: a phototroph-fungus partnership? Trends Ecol Evol 13(1):15–20

    Google Scholar 

  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25(2):333–341

    Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:26

    Google Scholar 

  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18(6–7):287–296

    Google Scholar 

  • Smith FA, Smith SE (1997) Tansley review no. 96 structural diversity in (vesicular)–arbuscular mycorrhizal symbioses. New Phytol 137(3):373–388

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal. symbiosis, 3rd edn. Academic Press, New York. ISBN, 440026354, 605

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Google Scholar 

  • Stubblefield SP, Taylor TN, Trappe JM (1987) Fossil mycorrhizae: a case for symbiosis. Science 237(4810):59–60

    Google Scholar 

  • Tanaka Y, Yano K (2005) Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ 28(10):1247–1254

    Google Scholar 

  • Taylor TN, Krings M, Taylor EL (2014) Fossil fungi. Academic Press, San Diego

    Google Scholar 

  • Taylor TN, Remy W, Hass H, Kerp H (1995) Fossil arbuscular mycorrhizae from the Early Devonian. Mycologia 87:560–573

    Google Scholar 

  • Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20(4):217–263

    Google Scholar 

  • Titus JH, Titus PJ, Nowak RS, Smith SD (2002) Arbuscular mycorrhizae of Mojave Desert plants. West N Am Naturalist 62:327–334

    Google Scholar 

  • Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD (2007) Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol 61(2):295–304

    Google Scholar 

  • Unestam T, Sun YP (1995) Extramatrical structures of hydrophobic and hydrophilic ectomycorrhizal fungi. Mycorrhiza 5(5):301–311

    Google Scholar 

  • Vallino M, Massa N, Lumini E, Bianciotto V, Berta G, Bonfante P (2006) Assessment of arbuscular mycorrhizal fungal diversity in roots of Solidago gigantea growing in a polluted soil in Northern Italy. Environ Microbiol 8(6):971–983

    Google Scholar 

  • Van Der Heijden MG, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11(3):296–310

    Google Scholar 

  • Van Der Heijden MG, Horton TR (2009) Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol 97(6):1139–1150

    Google Scholar 

  • Van Der Heijden MG, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205(4):1406–1423

    Google Scholar 

  • Vierheilig H, Bennett R, Kiddle G, Kaldorf M, Ludwig-Müller J (2000) Differences in glucosinolate patterns and arbuscular mycorrhizal status of glucosinolate-containing plant species. New Phytol 146(2):343–352

    Google Scholar 

  • Vosátka M, Albrechtová J (2008) Theoretical aspects and practical uses of mycorrhizal technology in floriculture and horticulture. In: da Silva Jaime JAT (ed) Floriculture ornamental plant biotechnology: advances and topical, vol 5. Global Sciences Book Ltd., Japan, pp 466–479

    Google Scholar 

  • Vosátka M, Albrechtová J (2009) Benefits of arbuscular mycorrhizal fungi to sustainable crop production. In: Microbial strategies for crop improvement. Springer, Berlin, Heidelberg, pp 205–225

    Google Scholar 

  • Vosátka M, Albrechtová J, Patten R (2008) The international market development for mycorrhizal technology. In: Mycorrhiza. Springer, Berlin, Heidelberg, pp 419–438

    Google Scholar 

  • Vosatka M, Dodd JC (2002) Ecological considerations for successful application of arbuscular mycorrhizal fungi inoculum. In: Mycorrhizal Technology in Agriculture. Birkhäuser, Basel, pp 235–247

    Google Scholar 

  • Walker JF, Aldrich-Wolfe L, Riffel A, Barbare H, Simpson NB, Trowbridge J, Jumpponen A (2011) Diverse Helotiales associated with the roots of three species of Arctic Ericaceae provide no evidence for host specificity. New Phytol 191(2):515–527

    Google Scholar 

  • Walter MH, Hans J, Strack D (2002) Two distantly related genes encoding 1-deoxy-d-xylulose 5-phosphate synthases: differential regulation in shoots and apocarotenoid-accumulating mycorrhizal roots. Plant J 31(3):243–254

    Google Scholar 

  • Wu QS, Cao MQ, Zou YN, He XH (2014) Direct and indirect effects of glomalin, mycorrhizal hyphae, and roots on aggregate stability in rhizosphere of trifoliate orange. Sci Rep 4:5823

    Google Scholar 

  • Wu QS, Zou YN (2009) Mycorrhiza has a direct effect on reactive oxygen metabolism of drought-stressed citrus. Plant Soil Environ 55(10):436–442

    Google Scholar 

  • Wurzburger N, Higgins BP, Hendrick RL (2012) Ericoid mycorrhizal root fungi and their multicopper oxidases from a temperate forest shrub. Ecol Evol 2(1):65–79

    Google Scholar 

  • Xu GH, Chague V, Melamed-Bessudo C, Kapulnik Y, Jain A, Raghothama KG, Silber A (2007) Functional characterization of LePT4: a phosphate transporter in tomato with mycorrhiza-enhanced expression. J Expt Bot 58(10):2491–2501

    Google Scholar 

  • Yang G, Liu N, Lu W, Wang S, Kan H, Zhang Y, Chen Y (2014) The interaction between arbuscular mycorrhizal fungi and soil phosphorus availability influences plant community productivity and ecosystem stability. J Ecol 102(4):1072–1082

    Google Scholar 

  • Zhi-wei Z (2000) The arbuscular mycorrhizas of pteridophytes in Yunnan, southwest China: evolutionary interpretations. Mycorrhiza 10(3):145–149

    Google Scholar 

  • Zhu HH, Yao Q (2004) Localized and systemic increase of phenols in tomato roots induced by Glomus versiforme inhibits Ralstonia solanacearum. J Phytopathol 152(10):537–542

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to the University Grants Commission (UGC), New Delhi, for providing financial assistance to carry out this study. Authors are also thankful to the head of Botany Department, University of Allahabad, for providing other facilities.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, D., Kehri, H.K., Zoomi, I., Akhtar, O., Singh, A.K. (2019). Mycorrhizal Fungi: Biodiversity, Ecological Significance, and Industrial Applications. In: Yadav, A., Mishra, S., Singh, S., Gupta, A. (eds) Recent Advancement in White Biotechnology Through Fungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-10480-1_5

Download citation

Publish with us

Policies and ethics