Skip to main content

Aspergillus: Biodiversity, Ecological Significances, and Industrial Applications

  • Chapter
  • First Online:
Recent Advancement in White Biotechnology Through Fungi

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Since Pier Antonio Micheli described and published genus Aspergillus in Nova Plantarum Genera in 1729, the genus attracted an immense interest. Aspergillus, a diverse genus occurring worldwide, species from this genus are considered to primarily be terricolous with important roles as decomposers of organic materials and cause destructive rots in the agricultural products and food industry where they produce a wide range of mycotoxins. The genus currently contains more than 340 accepted species, and its economic and historical importance makes it remain at center stage in future discussions about nomenclature and mycological diversity. Therefore, together with its ubiquitous nature, these species (anamorphic and teleomorphic) are of great significant impacts on ecosystems, agriculture, food production, biotechnology, and human and animal health. This chapter aims to give an overview on the studies and investigation of Aspergillus biodiversity in a wide variety of different ecological habitats, ecological significances, and industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Azeem AM (1991) Effect of overgrazing on vegetation, microbes and soil in Ismailia-desert habitat. Biological Diversity Symposium, Madrid, pp 241–246

    Google Scholar 

  • Abdel-Azeem AM (2003) Ecological and taxonomical studies on ascospore-producing fungi in Egypt. PhD Thesis, Faculty of Science. Suez Canal University, Egypt

    Google Scholar 

  • Abdel-Azeem AM (2009) Operation Wallacea in Egypt. I- A preliminary study on diversity of fungi in the world heritage site of Saint Katherine Egypt. Assiut Univ J Bot 38(1):29–54

    Google Scholar 

  • Abdel-Azeem AM, Ibrahim ME (2004) Diversity of terrophilous mycobiota of Sinai. Egypt J Biol 6:21–31

    Google Scholar 

  • Abdel-Azeem AM, Rashad HM (2013) Mycobiota of outdoor air that can cause asthma: a case study from Lake Manzala, Egypt. Mycosphere 4(4):1092–1104

    Google Scholar 

  • Abdel-Azeem AM, Abdel-Moneim TS, Ibrahim ME, MAA H, Saleh MY (2007) Effect of long-term heavy metal contamination on diversity of terricolous fungi and nematodes in Egypt- a case study. Water Air Soil Pollut 186(1):233–254

    Google Scholar 

  • Abdel-Azeem AM, El-Morsy EM, Nour El-Dein MM, Rashad HM (2015) Occurrence and diversity of mycobiota in heavy metal contaminated sediments of Mediterranean coastal lagoon El-Manzala, Egypt. Mycosphere 6(2):228–240

    Google Scholar 

  • Abdel-Azeem AM, Salem FM, Abdel-Azeem MA, Nafady NA, Mohesien MT, Soliman EA (2016) Biodiversity of the Genus Aspergillus in different habitats. In: Gupta VK (ed) New and future developments in microbial biotechnology and bioengineering: Aspergillus system properties and applications. Elsevier, Amsterdam, pp 3–28

    Google Scholar 

  • Abdel-Hafez AII, Mazen MB, Galal AA (1989a) Keratinophilic and cycloheximide resistant fungi in soils of Sinai Governorate, Egypt. Cryptogam Mycol 10(3):265–275

    Google Scholar 

  • Abdel-Hafez AII, Mazen MB, Galal AA (1989b) Some ecological studies of osmophilic and halophilic soil fungi of Sinai Peninsula, Egypt. J Sohag Pure Appl Sci Bull 5:67–83

    Google Scholar 

  • Abdel-Hafez AII, Mazen MB, Galal AA (1990) Glycophilic and cellulose-decomposing fungi from soils of Sinai Peninsula, Egypt. Arab Gulf J Sci Res 8(1):153–168

    Google Scholar 

  • Abdel-Hafez SII (1981) Halophilic fungi of desert soils in Saudi Arabia. Mycopathologia 75:75e80

    Google Scholar 

  • Abdel-Hafez SII (1982a) Survey of microflora of desert soils in Saudi Arabia. Mycopathologia 80:3–8

    Google Scholar 

  • Abdel-Hafez SII (1982b) Osmophilic fungi of desert soils in Saudi Arabia. Mycopathologia 80:9–14

    Google Scholar 

  • Abdel-Hafez SII (1982c) Thermophilic and thermotolerant fungi of desert soils in Saudi Arabia. Mycopathologia 80:15–20

    Google Scholar 

  • Abdel-Hafez SII (1994) Studies on soil mycoflora of desert soils in Saudi Arabia. Mycopathologia 80:3–8

    Google Scholar 

  • Abdel-Hafez SII (1974) Ecological studies on Egyptian soil fungi, PhD Thesis. Department of Botany, Faculty of Science, Assiut University, Egypt

    Google Scholar 

  • Abdel-Hafez SII, Abdel-Kader MIA, Abdel-Hafez AII (1983) Composition of the fungal flora of Syrian soils. Mycopathologia 81(3):161–166

    Google Scholar 

  • Abdel-Hafez SII, El-Maghraby OMO (1993) Thermophilic and thermotolerant fungi of Wadi-Bir-El-Ain soils. Eastern desert, Egypt. Abhath Al-Yarmouk Pure Sci Eng 2:55–66

    Google Scholar 

  • Abdel-Hafez SII, Ismail MA, Hussein NA, Abdel-Hameed NA (2012) Fusaria and other fungi taxa associated with rhizosphere and rhizoplane of lentil and sesame at different growth stages. Acta Mycol 47(1):35–48

    Google Scholar 

  • Abdel-Hafez SII, Moharram AM, Abdel-Sater MA (2000) Monthly variations in the mycobiota of wheat fields in El-Kharga Oasis, Western Desert, Egypt. Bull Fac Sci Assiut Univ 29(2-D):195–211

    Google Scholar 

  • Abdel-Kader MIA, Abdel-Hafez AII, Abdel-Hafez SII (1983) Composition of the fungal flora of Syrian soils. II Cellulosedecomposing fungi. Mycopathologia 81:167–171

    Google Scholar 

  • Abdel-Sater MA (1990) Studies on the mycoflora of the New Valley area, Western Desert, Egypt. PhD Thesis, Faculty of Science, Assiut University

    Google Scholar 

  • Abdel-Sater MA (2000) Soil fungi of the New Valley area, Western desert, Egypt. Bull Fac Sci Assiut Univ 29(2-D):255–271

    Google Scholar 

  • Abdullah SK, Al-Dossari MN, Al-Imara FJ (2010) Mycobiota of surface sediments in marshes of southern Iraq. Marsh Bull 5(1):14–26

    Google Scholar 

  • Abdullah SK, Al-Khesraji TO, Al-Edany TY (1986) Soil mycoflora of the southern desert of Iraq. Sydowia 39:8e16

    Google Scholar 

  • Abou-Zeid AM, El-Fattah RIA (2007) Ecological studies on the Rhizosperic Fungi of some halophytic plants in Taif Governorate, Saudi Arabia. World J Agric Sci 3:273–279

    Google Scholar 

  • Abramson D, Sinha RN, Mills JT (1987) Mycotoxin formation in moist 2-row and 6-row barley during granary storage. Mycopathologia 97:179–185

    Google Scholar 

  • Abrell L, Borgeson B, Crews P (1996) Chloro polyketides from the cultured fungus (Aspergillus) separated from a marine sponge. Tetrahedron Lett 37:2331–2334

    Google Scholar 

  • Abu Deraz SS (2014) Isolation and characterization of microbiota inhabiting Al-Aqsa Mosque, Al-Quds, Palestine. Master thesis, Faculty of Science, University of Suez Canal

    Google Scholar 

  • Abu Elsaoud AM, AbdelAzeem AM, Mousa AS, Hassan SSM (2015) Biosynthesis, optimisation and Photostimulation of αNADPH dependent nitrate Reductase mediated silver nanoparticles by Egyptian endophytic fungi. Advances in Environmental Biology 9(24):259–269

    Google Scholar 

  • Abu Deraz, S. S., Abdel-Azeem, A. M. and Mansour, S. R. ( 2016 ). Isolation and Characterization of Microbiota Inhabiting Al-Aqsa Mosque, Al-Quds, Palestine. LAP LAMBERT Academic Publishing. ISBN 978-3-659-96786-3.

    Google Scholar 

  • Aguilar CN, Augur C, Favela-Torres E, Viniegra-González G (2001) Production of tannase by Aspergillus niger Aa-20 in submerged and solid-state fermentation: influence of glucose and tannic acid. J Ind Microbiol Biotechnol 26(5):296–302

    Google Scholar 

  • Alberts AW, Chen J, Kuron G, Hunt V, Huff J, Hoffman C et al (1980) Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci 77:3957–3961

    Google Scholar 

  • Al-Doory Y, Tolba MK, Al-Ani A (1959) On the fungal flora of Iraqi soil.II: Central Iraq. Mycologia 51:429–439

    Google Scholar 

  • Ali MI (1977) Studies on the fungal flora of Saudi Arabia. 1-Wadi Hanif. Bull Fac Sci Riyadh Univ 8:7–20

    Google Scholar 

  • Ali MI, Abu-Zinada AH, El-Mashharawi Z (1977) On the fungal flora of Saudi Arabia. 11-Seasonal fluctuations of fungi in the rhizosphere of some plants. Bull Fac Sci., Riyadh Univ 8:203–214

    Google Scholar 

  • Ali-Shtayeh MS, Jamous RM (2000) Keratinophilic fungi and related dermatophytes in polluted soil and water habitats. Revista Iberoam Micologia 17:51–59

    Google Scholar 

  • Al-Subai AAT (1983) Soil fungi in state of Qatar. M.Sc. Thesis, Botany Department, Faculty of Science, Qatar University, Qatar

    Google Scholar 

  • Alva P, Mckenzie EHC, Pointing SB et al (2002) Do seagrasses harbour endophytes? In: Hyde KD (ed) Fungi in Marine Environments, vol 7. Fungal Diversity Research Series, Hong Kong, pp 167–178

    Google Scholar 

  • Anslow WK, Raistrick H (1938) Studies in the biochemistry of micro-organisms: Fumigatin (3-hydroxy-4-methoxy-2:5-toluquinone), and spinulosin (3:6-dihydroxy-4-methoxy-2:5-toluquinone), metabolic products respectively of Aspergillus fumigatus Fresenius and Penicillium spinulosum Thom. Biochem J 32(4):687–696

    Google Scholar 

  • Arif IA, Hashem AR (1988) Soil analysis and mycoflora of Gizan City, Saudi Arabia. Phyton, Argentina 62:109–113

    Google Scholar 

  • Atalla MM, Elkhrisy EAM, Asem MA (2011) Production of textile reddish brown dyes by fungi. Malays J Microbiol 33–40

    Google Scholar 

  • Amare MG, Keller NP (2014) Molecular mechanisms of Aspergillus flavus secondary metabolism and development. Fungal Genet Biol 66:11–18

    Google Scholar 

  • Anderson K, Morris G, Kennedy H, Croall J, Michie J, Richardson M et al (1996) Aspergillosis in immunocompromised paediatric patients: associations with building hygiene, design, and indoor air. Thorax 51(3):256–261

    Google Scholar 

  • Anisa SK, Ashwini S, Girish K (2013) Isolation and screening of Aspergillus spp. for pectinolytic activity. Electron J Biol 9(2):37–41

    Google Scholar 

  • Anke H, Kolthoum I, Zähner H, Laatsch H (1980) Metabolic products of microorganisms. The anthrax quinones of Aspergillus glaucus group. Occurrence,isolation, identification and antimicrobial activity. Arch Microbiol 126:223–230

    Google Scholar 

  • Antane S, Caufield CE, Hu W, Keeney D, Labthavikul P, Morris K et al (2006) Pulvinones as bacterial cell wall biosynthesis inhibitors. Bioorg Med Chem Lett 16:176–180

    Google Scholar 

  • Anwar YAS, Imartika H (2007) The production of tannin acyl hydrolase from Aspergillus niger. Indonesia Microbiol 1(2):91–94

    Google Scholar 

  • Aquino ACMM, Jorge JA, Terenzi HF, Polizeli MLTM (2003) Studies on a thermostable a-amylase from thermophilic fungus Scytalidium thermophilum. Appl Microbiol Biotechnol 61:323–328

    Google Scholar 

  • Arenz BE, Blanchette RA, Farrell RL (2014) Fungal diversity in Antarctic soils. In: Cowan D (ed) Antarctic terrestrial microbiology: physical and biological properties of Antarctic soils. Springer, Berlin, pp 35–53

    Google Scholar 

  • Ariff AB, Salleh MS, Ghani B, Hassan MA, Rusul G, Karim MIA (1996) Aeration and yeast extract requirements for kojic acid production by Aspergillus flavus link. Enzym Microb Technol 19(7):545–550

    Google Scholar 

  • Arora DS, Chandra P (2010a) Optimization of antioxidant potential of Aspergillus terreus through different statistical approaches. Biotechnol Appl Biochem 57:77–86. https://doi.org/10.1042/BA20100202

    Google Scholar 

  • Arora DS, Chandra P (2010b) Assay of antioxidant potential of two Aspergillus isolates by different methods under various physio-chemical conditions. Brazilian J Microbiol 41:765–777. https://doi.org/10.1590/S1517-83822010000300029

    Google Scholar 

  • Arora DS, Chandra P (2011) Antioxidant activity of Aspergillus fumigatus. ISRN Pharmacol. https://doi.org/10.5402/2011/619395

  • Arya A, Shah AR, Sadasivan S (2001) Indoor aeromycoflora of Baroda museum and deterioration of Egyptian mummy. Curr Sci 81:793–799

    Google Scholar 

  • Baghdadi VC (1968) De speciebus novis Penicilli Fr. et Aspergilli Fr. E terrifies Syriae isolatis notula. Novitate Systematicae Plantarum non Vascularium 7:96–114

    Google Scholar 

  • Bai ZQ, Lin XP, Wang YZ, Wang JF, Zhou XF, Yang B et al (2014) New phenyl derivatives from endophytic fungus Aspergillus flavipes AIL8 derived of mangrove plant Acanthus ilicifolius. Fitoterapia 95:194–202

    Google Scholar 

  • Bajpai B, Patil S (2008) A new approach to microbial production of gallic acid. Braz J Microbiol 39:708–711

    Google Scholar 

  • Balbool BA, Abdel-Azeem AM, Khalil WF, El-Kazzaz WM (2013) Bioprospecting as a conservation tool: the genus Aspergillus (Eurotium) in Egypt. Third International Congress on Fungal Conservation, Akyaka, Mugla, Turkey, 11–15 November 2013. Abstract book: 36

    Google Scholar 

  • Barakat A (1999) Incidence of halophilic and osmophoilic soil fungi and glycerol biosynthesis by Eurotium amstelodami Manginfrom Riyadh, Saudi Arabia. Bull Fac Sci Assiut Univ 28(2-D):377–390

    Google Scholar 

  • Baranyi N, Kocsubé S, Vágvölgyi C, Varga J (2013) Current trends in aflatoxin research. Acta Biologica Szegediensis 57(2):95–107

    Google Scholar 

  • Barkai-Golan R, Paster N (2008) Mouldy fruits and vegetables as a source of mycotoxins: part 1. World Mycotoxin J 1(2):147–159

    Google Scholar 

  • Battilani P, Pietri A (2002) Ochratoxin A in grapes and wine. Euro J Plant Pathol 108:639–643

    Google Scholar 

  • Bayman P, Baker JL, Doster MA, Michailides TJ, Mahoney NE (2002) Ochratoxin production by the Aspergillus ochraceus group and Aspergillus alliaceus. Appl Environ Microbiol 68:2326–2329

    Google Scholar 

  • Begum MF, Absar N (2009) Purification and characterization of intracellular cellulase from Aspergillus oryzae ITCC-4857.01. Mycobiology 37(2):121–127

    Google Scholar 

  • Behera BC, Mishra RR, Thatoi HN (2012) Diversity of soil fungi from mangroves of Mahanadi delta, Orissa, India. J Microbiol Biotechnol Res 2:375–378

    Google Scholar 

  • Belmares R, Contresras-Esquival JC, Rodriguez-Harerra R, Coronel AR, Aguilar CN (2004) Lebensmittel-Wissenschaft Technologie. Food Sci Technol 37(8):857–864

    Google Scholar 

  • Belofsky GN, Jensen PR, Renner MK et al (1998) New Cytotoxic sesquiterpenoid nitrobenzoyl esters from a marine isolate of the fungus Aspergillus versicolor. Tetrahedron 54:1715–1724

    Google Scholar 

  • Bentley R (2006) From miso, sake and shoyu to cosmetics: a century of science for kojic acid. Nat Prod Rep 23(6):1046–1062

    Google Scholar 

  • Besada WH, Yusef HM (1968) Onthe mycoflora of UAR soil. Proc Egyp Acad Sci 21:103–109

    Google Scholar 

  • Betina V (1989) Mycotoxins – chemical, biological and environmental aspects. Elsevier, Amsterdam, pp 192–241

    Google Scholar 

  • Bhat MK, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15(3–4):583–620

    Google Scholar 

  • Bhatnagar-Mathur P, Sunkara S, Bhatnagar-Panwar M, Waliyar F, Sharma KK (2015) Biotechnological advances for combating Aspergillus flavus and aflatoxin contamination in crops. Plant Sci 234:119–132

    Google Scholar 

  • Birch A, Massywestropp R, Moye C (1955) Studies in relation to biosynthesis. 7. 2-Hydroxy-6-methylbenzoic acid in Penicillium griseofulvum Dierckx. Aust J Chem 8(4):539–544

    Google Scholar 

  • Bizukojc M, Pawlak M, Boruta T, Gonciarz J (2012) Effect of pH on biosynthesis of lovastatin and other secondary metabolites by Aspergillus terreus ATCC 20542. J Biotechnol 162:253–261

    Google Scholar 

  • Blanchette RA (1995) Biodeterioration of archaeological wood. CAB Biodeterioration Abstracts 9:113–127

    Google Scholar 

  • Blanchette RA (1998) In: Dardes K, Rotne A (eds) A guide to wood deterioration caused by microorganisms and insects. The Structural Conservation of Panel Paintings Getty Conversion Institute, Los Angeles, pp 55–68

    Google Scholar 

  • Boadi DK, Neufeld RJ (2001) Encapsulation of tannase for the hydrolysis of tea tannins. Enzyme Microbiol Technol 28:590–595

    Google Scholar 

  • Bonugli-Santos RC, Vasconcelos MR, Passarini MRZ, Vieira GAL, Lopes VCP, Mainardi PH et al (2015) Marine-derived fungi: diversity of enzymes and biotechnological applications. Front Microbiol doi.org/10.3389/fmicb.2015.00269

  • Borut S (1960) An ecological and physiological study on soil fungi of the Northern Negev (Israel). Bull Res Coun E Israel 8:65–80

    Google Scholar 

  • Bridge PD, Spooner BM (2012) Non-lichenized Antarctic fungi: transient visitors or members of a cryptic ecosystem. Fungal Ecol 5:381–394

    Google Scholar 

  • Brock TD (1979) Ecology of saline lakes. In: Shilo M (ed) Strategies of microbial life in extreme environments. Dahlem Konferenzen, Berlin, pp 29–47

    Google Scholar 

  • Buchanan JR, Sommer NF, Fortlage RJ (1975) Aspergillus flavus infection and aflatoxin production in fig fruits. Appl Microbiol 30:238–241

    Google Scholar 

  • Butinar L, Frisvad JC, Gunde-Cimerman N (2011) Hypersaline waters- a potential source of foodborne toxigenic aspergilli and penicillia. FEMS Microbiol Ecol 77:186–199

    Google Scholar 

  • Butinar L, Santos S, Spencer-Martins I, Oren A, Gunde-Cimerman N (2005a) Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244(2):229–234

    Google Scholar 

  • Butinar L, Sonjak S, Zalar P, Plemenitaš A, Gunde-Cimerman N (2005b) Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Bot Mar 48(1):73–79

    Google Scholar 

  • Butinar L, Zalar P, Frisvad JC, Gunde-Cimerman N (2005c) The genus Eurotium—members of indigenous fungal community in hypersaline waters of salterns. FEMS Microbiol Ecol 51(2):155–166

    Google Scholar 

  • Callaghan TV, Björn LO, Chernov Y, Chapin T, Christensen TR, Huntley B et al (2004) Biodiversity, distributions and adaptations of Arctic species in the context of environmental change. Ambio 33:404–417

    Google Scholar 

  • Campbell AC, Maidment MS, Pick JH, Stevenson DFMJ (1985) Synthesis of (E)- and (2)-pulvinones. Chem Soc Perkin Trans 1:1567–1576

    Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:233–238

    Google Scholar 

  • Cantrell SA, Casillas-Martinez L, Molina M (2006) Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Mycol Res 110:962–970

    Google Scholar 

  • Castellá G, Alborch L, Bragulat MR, Cabañes FJ (2015) Real time quantitative expression study of a polyketide synthase gene related to ochratoxin a biosynthesis in Aspergillus niger. Food Control 53:147–150

    Google Scholar 

  • Čavka M, Glasnović A, Janković I, Šikanjić PR, Perić B, Brkljačić B et al (2010) Microbiological analysis of a mummy from the archeological museum in Zagreb. Coll Antropol 34:803–805

    Google Scholar 

  • Chang CT, Tang MS, Lin CF (1995) Purification and properties of alpha-amylase from Aspergillus oryzaeATCC 76080. Biochem Mol Biol Int 36(1):185–193

    Google Scholar 

  • Chaudhary J, Pathak AN, Lakhawat S (2014) Production technology and applications of kojic acid. Annu Res Rev Biol 4(21):3165–3196

    Google Scholar 

  • Christensen M, Tuthill DE (1985) Aspergillus: an overview. In: Samson RA, Pitt JI (eds) Advances in Penicillium and Aspergillus systematics. Plenum Press, New York, NY, pp 195–209

    Google Scholar 

  • Chutmanop J, Chuichulcherm S, Chisti Y, Srinophakun P (2008) Protease production by Aspergillus oryzae in solid-state fermentation using agroindustrial substrates. J Chem Technol Biotechnol 83:1012–1018

    Google Scholar 

  • Chen FC, Manchard PS, Whalley WB (1969) The structure of monascin. J Chem Soc D, 130 – 131.

    Google Scholar 

  • Durán N, Teixeira MFS, De Conti R, Esposito E (2002) Ecological-friendly pigments from fungi. Crit Rev Food Sci Nutr 42:53–66

    Google Scholar 

  • Ciegler A (1972) Bioproduction of ochratoxin A and penicillic acid by members of the Aspergillus ochraceus group. Canad J Microbiol 18:631–636

    Google Scholar 

  • Cole RJ (1984) Cyclopiazonic acid and related toxins. In: Betina V (ed) Mycotoxins: production, isolation, separation and purification. Elsevier, Amsterdam, pp 405–414

    Google Scholar 

  • Cole RJ, Cox RH (1981) Handbook of toxic fungal metabolites. Academic Press, New York, NY, pp 368–373

    Google Scholar 

  • Conley CA, Ishkhanova G, McKay CP, Cullings K (2006) A preliminary survey of non-lichenized fungi cultured from the hyperarid Atacama Desert of Chile. Astrobiology 6:521–526

    Google Scholar 

  • Contesini FJ, Lopes DB, Macedo GA, Nascimento MG, Carvalho PO (2010) Aspergillus sp. lipase: potential biocatalyst for industrial use. J Mol Catal B Enzym 67:163–171

    Google Scholar 

  • Corazza GR, Benati G, Sorge M, Strocchi A, Calza G, Gasbarrini G (1992) beta-galactosidase from Aspergillus niger in adult lactose malabsorption: a double-blind crossover study. Aliment Pharmacol Ther 6(1):61–66

    Google Scholar 

  • Costa AM, CristinaSouza GM, Bracht A, Kadowaki MK, de Souza ACS, Oliveira RF et al (2013) Production of tannase and gallic acid by Aspergillus tamarii in submerged and solid state cultures. Afr J Biochem Res 7(10):197–202

    Google Scholar 

  • Couto SR, Toca-Herrera JL (2007) Laccase production at reactor scale by filamentous fungi. Biotechnol Adv 25:558–569

    Google Scholar 

  • Crespo-Sempere A, Martínez-Culebras PV, González-Candelas L (2014) The loss of the inducible Aspergillus carbonarius MFS transporter MfsA leads to ochratoxin A overproduction. Int J Food Microbiol 181:1–9

    Google Scholar 

  • Cruickshank RH, Pitt JI (1990) Isoenzyme patterns in Aspergillus flavus and closely related taxa. In: Samson RA, Pitt JI (eds) Modern concepts in Penicillium and Aspergillus classification. Plenum Press, New York and London, pp 259–264

    Google Scholar 

  • Cui L, Morris A, Ghedin E (2013) The human mycobiome in health and disease. Genome Med 5(7):63

    Google Scholar 

  • Cuijpers CEJ, Swaen GMH, Wesseling G, Sturmans F, Wouters EFM (1995) Adverse effects of the indoor environment on respiratory health in primary school children. Environ Res 68:11–23

    Google Scholar 

  • Currie JN (1917) The citric acid fermentationd of Aspergillus niger. J Biol Chem 31:15–37

    Google Scholar 

  • Darwish SS, El Hadidi N, Mansour M (2013) The effect of fungal decay on Ficus sycomorus wood. Int J Conserv Sci 4(3):271–282

    Google Scholar 

  • Davis ND (1981) Sterigmatocystin and other mycotoxins produced by Aspergillus species. J Food Prot 44:711–714

    Google Scholar 

  • De Castro RJS, Sato HH (2014) Production and biochemical characterization of protease from Aspergillus oryzae: an evaluation of the physical–chemical parameters using agroindustrial wastes as supports. Biocatal Agric Biotechnol 3:20–25

    Google Scholar 

  • De Vrese M, Laue C, Offick B, Soeth E, Repenning F, Thoß A et al (2015) A combination of acid lactase from Aspergillus oryzae and yogurt bacteria improves lactose digestion in lactose maldigesters synergistically: a randomized, controlled, double-blind cross-over trial. Clin Nutr 34(3):394–399

    Google Scholar 

  • de Vries RP, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65:497–522

    Google Scholar 

  • Debing J, Peijun L, Stagnitti F, Xianzhe X, Li L (2006) Pectinase production by solid fermentation from Aspergillus niger by a new prescription experiment. Ecotox Environ Safe 64:244–250

    Google Scholar 

  • Dendouga W, Boureghda H, Belhamra M (2015) Edaphic factors affecting distribution of soil fungi in three chotts located in Algeria desert. Courrier du Savoir 19:147–152

    Google Scholar 

  • Devi LS, Joshi SR (2012) Antimicrobial and synergistic effects of silver nanoparticles synthesized using soil fungi of high altitudes of eastern Himalaya. Mycobiology 40:27–34

    Google Scholar 

  • Dewi RT, Tachibana S, Itoh K (2012) Isolation of antioxidant compounds from Aspergillus Terreus LS01. J Microb Biochem Technol 04:10–14. https://doi.org/10.4172/1948-5948.1000065

    Google Scholar 

  • Dhillon GS, Brara SK, Verma M, Tyagi RD (2011) Utilization of different agro-industrial wastes for sustainable bioproduction of citric acid by Aspergillus niger. Biochem Eng J 54:83–92

    Google Scholar 

  • Ding B, Yin Y, Zhang F, Li Z (2011) Recovery and phylogenetic diversity of culturable fungi associated with marine sponges Clathrina luteoculcitella and Holoxea sp. in the South China Sea. Mar Biotechnol 13:713–721

    Google Scholar 

  • Dorner JW, Cole RJ, Diener UL (1984) The relationship of Aspergillus flavus and Aspergillus parasiticus with reference to production of Aflatoxins and cyclopiazonic acid. Mycopathologia 87:13–15

    Google Scholar 

  • Doster MA, Michailides TJ, Morgan DP (1996) Aspergillus species and mycotoxins in figs from Californian orchards. Plant Dis 80:484–489

    Google Scholar 

  • Dörfelt H, Schmidt AR (2005) A fossil Aspergillus from Baltic amber. Mycol Res 109:956–960

    Google Scholar 

  • Durairajan B, Sankari PS (2014) Optimization of solid state fermentation conditions for the production of pectinases by Aspergillus niger. J Pharm Biosci 2:50–57

    Google Scholar 

  • Durley RC, MacMillan J, Simpson TJ et al (1975) Fungal products. XIII Xanthomegnin, viomellein, rubrosulphin and viopurpurin, pigments from Aspergillus sulphureus and Aspergillus melleus. J Chem Perkin Trans 1:163–169

    Google Scholar 

  • Ein-Gil N, Ilan M, Carmeli S, Smith GW, Pawlik JR, Yarden O (2009) Presence of Aspergillus sydowii, a pathogen of gorgonian seafans in the marine sponge Spongia obscura. ISME J 3(6):752–755

    Google Scholar 

  • El-Buni AM, Rattan SS (1981) Check list of Libyan Fungi. Department of Botany, Al Faateh University, Tripoli, p 169

    Google Scholar 

  • El-Dohlob SM and FF Migahed (1985) Seed Borne and Rhizosphere fungi of four varieties of crop plants. 2nd Agric Conf Bot Sci 21–23 Sept.

    Google Scholar 

  • El-Said AHM, Saleem A (2008) Ecological and physiological studies on soil fungi at western region, Libya. Mycobiology 36(1):1–109

    Google Scholar 

  • Emami S, Hosseinimehr SJ, Taghdisi SM, Akhlaghpoor S (2007) Kojic acid and its manganese and zinc complexes as potential radioprotective agents. Bioorg Med Chem Lett 1(1):45–48

    Google Scholar 

  • Esawy MA, Gamala AA, Kamel Z, Ismail A-M S, Abdel-Fattah AF (2013) Evaluation of free and immobilized Aspergillus niger NRC1ami pectinase applicable in industrial processes. Carbohydr Poly 92:1463–1469

    Google Scholar 

  • El-Imam AA, Chenyu D (2014) Fermentative Itaconic Acid Production. J Biodivers Biopros Dev 1(1):1–8

    Google Scholar 

  • Feng Y, Shao Y, Chen F (2012) Monascus pigments. Appl Microbiol Biotechnol 96:1421–1440

    Google Scholar 

  • Fathi SM, El-Husseini TM, Abu-Zinada AH (1975) Seasonal variations of soil microflora and their activities in Riyadh region, Saudi Arabia. Bull Fac Sci Riyadh Univ 7:17–30

    Google Scholar 

  • Findley K, Oh J, Yang J, Conian S, Deming C et al (2013) Topographic diversity of fungal and bacterial communities in human skin. Nature https://doi.org/10.1038/nature12171f (online 22 May 2013)

  • Flannigan B, Samson R, Miller J (eds) (2011) Microorganisms in home and indoor work environments. CRC Press, Boca Raton

    Google Scholar 

  • Flannigan B, Pearce AR (1994) Aspergillus spoilage: spoilage of cereals and cereal products by the hazardous species Aspergillus clavatus. In: Powell KA, Renwick A, Peberdy JF (eds) The Genus Aspergillus from taxonomy and genetics to industrial application. Plenum Press, New York, pp 55–62

    Google Scholar 

  • Flannigan B, McCabe EM, McGarry F (1991) Allergenic and toxigenic micro-organisms in houses. J Appl Bacteriol Sympos 70:61S–73S

    Google Scholar 

  • Fröhlich-Nowoisky J, Burrows SM, Xie Z, Engling G, Solomon PA, Fraser MP et al (2012) Biogeography in the air: fungal diversity over land and oceans. Biogeosciences 9:1125–1136. https://doi.org/10.5194/bg-9-1125-2012

    Google Scholar 

  • Friend BA, Shahani KM (1982) Characterization and evaluation of Aspergillus oryzae lactase coupled to a regenerable support. Biotechnol Bioeng 24(2):329–345

    Google Scholar 

  • Frisvad JC (2008) Fungi in cold ecosystems. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 137–156

    Google Scholar 

  • Futamura T, Okabe M, Tamura T, Toda K, Matsunobu T, Park YS (2001) Improvement of production of kojic acid by a mutant strain Aspergillus oryzae, MK107-39. J Biosci Bioeng 93(3):272–276

    Google Scholar 

  • Gallagher RT, Richard JL, Stahr HM, Cole RJ (1978) Cyclopiazonic acid production by aflatoxigenic and non-aflatoxigenic strains of Aspergillus flavus. Mycopathologia 66:31–36

    Google Scholar 

  • Gao H, Guo W, Wang Q, Zhang L, Zhu M, Zhu T et al (2013) Aspulvinones from a mangrove rhizosphere soil-derived fungus Aspergillus terreus Gwq-48 with anti-influenza A viral (H1N1) activity. Bioorg Med Chem Lett 23:1776–1778

    Google Scholar 

  • Gao Z, Li B, Zheng C, Wang G (2008) Molecular detection of fungal communities in the Hawaiian marine sponges Suberites zeteki and Mycale armata. Appl Environ Microbiol 74:6091–6101

    Google Scholar 

  • Geiser DM, Taylor JW, Ritchie KB, Smith GW (1998) Cause of sea fan death in the West Indies. Nature 394:137–138

    Google Scholar 

  • George DS, Ong C-B (2013) Improvement of tannase production under submerged fermentation by Aspergillus niger FBT1 isolated from a mangrove forest. Biotechnologia 94(4):451–456

    Google Scholar 

  • Ghannoum MA, Jurevic RJ, Mukherjee PK, Cui F, Sikaroodi M, Naqvi A et al (2010) Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog 6:e1000713

    Google Scholar 

  • Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2010) Laccases: a never-ending story. Cell Mol Life Sci 67:369–385

    Google Scholar 

  • Gill-Carey D (1949) The nature of some antibiotics from aspergilli. Brit J Exp Path 30(2):119

    Google Scholar 

  • Giridhar P, Reddy SM (2001) Incidence of mycotoxigenic fungi on raisins. Adv Plant Sci 14:291–294

    Google Scholar 

  • Giusiano G, Piontelli E, Mangiaterra M, Sosa MA (2002) Distribución altitudinal de hongos queratinófilos, epífitos y endófitos en suelos semiáridos del noroeste argentino (Prov. De Jujuy, 23°l.S Y 66°l.W). Boletín Micológico 17:51–62

    Google Scholar 

  • Gorst-Allman CP, Steyn PS (1979) Screening methods for the detection of thirteen common mycotoxins. J Chromatogr 175:325–331

    Google Scholar 

  • Grishkan I, Nevo E (2010) Spatiotemporal distribution of soil microfungi in the Makhtesh Ramon area, central Negev desert, Israel. Fungal Ecol 3:326–337

    Google Scholar 

  • Grishkan I, Rong-Liang J, Kidron GJ, Xin-Rong L (2015) Cultivable microfungal communities inhabiting biological soil crusts in the Tengger Desert, China. Pedosphere 25(3):351–363

    Google Scholar 

  • Global Industry Analysts I. Itaconic Acid (IA) Market Trends (Internet). (cited 2018 Jun 15). Available from: https://www.strategyr.com/MarketResearch/infographTemplate.asp?code=MCP-6465

  • Gould BS, Raistrick H ( 1934 ) Crystalline colouring matters of species of the Aspergillus glaucus series. Biochem J, 1628 – 1640.

    Google Scholar 

  • Gupta S, Aggarwal S (2014) Novel Bio-colorants for textile application from fungi. J Textile Ass 282–287

    Google Scholar 

  • Guatam AK (2014) Diversity of fungal endophytes in some medicinal plants of Himachal Pradesh, India. Arch Phytopathol Plant Protect 47(5):537–544

    Google Scholar 

  • Guiraud P, Steiman R, Seigle-Murandi F, Sage L (1995) Mycoflora of soil around the Dead Sea II—Deuteromycetes (except Aspergillus and Penicillium). Syst Appl Microbiol 18:318–322

    Google Scholar 

  • Gunde-Cimerman N, Oren A, Plemenitaš A, Butinar L, Sonjak S, Turk M et al (2005) Halotolerant and halophilic fungi from coastal environments in the Arctics. In: Seckbach J (ed) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya, vol 9., Cellular Origin. Life in Extreme Habitats and Astrobiology Springer, The Netherlands, pp 397–423

    Google Scholar 

  • Gunde-Cimerman N, Sonjak S, Zalar P, Frisvad JC, Diderichsen B, Plemenitaš A (2003) Extremophilic fungi in Arctic ice: a relationship between adaptation to low temperature and water activity. Phys Chem Earth Pt B 28:1273–1278

    Google Scholar 

  • Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitaš A (2000) Hypersaline waters in salterns –natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32(3):235–240

    Google Scholar 

  • Guravaiah M, Kumar CP, Manasa C, Harika N, Sravani N (2018) Antioxidant activity of Aspergillus Stereus AF1. IOSR J Pharm Biol Sci 13:18–21. https://doi.org/10.9790/3008-1301041821

    Google Scholar 

  • Hanson JR (2008) The chemistry of fungi. The Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  • Hafez WA (2012) Comparative ecological studies on soil and rhizospheric fungi of maize and wheat plants in different areas in Minia Governorate Egypt. M.S. Thesis, Faculty of Science, El-MininaUniversity

    Google Scholar 

  • Hajian H, Yusoff WMW (2015) Itaconic acid production by microorganisms: a review current research. J Biol Sci 7(2):37–42

    Google Scholar 

  • Halwagy R, Moustafa AF, Kamel SM (1982) Ecology of the soil mycoflora in the desert soil of Kuwait. J Arid Environ 5:109–125

    Google Scholar 

  • Hallen-Adams HE, Suhr MJ (2017) Fungi in the healthy human gastrointestinal tract. Virulence 8(3):352–358

    Google Scholar 

  • Hamada S, Suzuki K, Aoki N, Suzuki Y (2013) Improvements in the qualities of gluten-free bread after using a protease obtained from Aspergillus oryzae. J Cereal Sci 57:91–97

    Google Scholar 

  • Hamdy HS, Fawzy EM (2012) Economic production of tannase by Aspergillus niger van tiegh adopting different fermentation protocols and possible applications. Romanian Biotechnol Lett 17(4):7441–7457

    Google Scholar 

  • Hansson D (2013) Structure and biosynthesis of fungal secondary metabolites: studies of the root Rot Pathogen Heterobasidion annosum s.l. and the Biocontrol Fungus Phlebiopsis gigantean. Thesis

    Google Scholar 

  • Hashem AR (1991) Studies on the fungal flora of Saudi Arabian soil. Crypt Bot 2/3:179–182

    Google Scholar 

  • Hashem AR (1995) Soil analysis and mycoflora of the Jubail industrial city in Saudi Arabia. J Univ Kuwait (Sci) 22:231–237

    Google Scholar 

  • Hatakka A, Hammel KE (2010) Fungal biodegradation of lignocelluloses. In: Hofrichter M (ed) The Mycota, X, Industrial applications, 2nd edn. Springer, Berlin Heidelberg. in press

    Google Scholar 

  • Hernandéz MS, Rodríguez MR, Guerra NP, Rosés RP (2006) Amylase production by Aspergillus niger in submerged cultivation on two wastes from food industries. J Food Eng 73(1):93–100

    Google Scholar 

  • Hesseltine CW, Vandegraft EE, Fennell I et al (1972) Aspergilli as ochratoxin producers. Mycologia 64:539–550

    Google Scholar 

  • Höller U, Wrigh AD, Matthee GF et al (2000) Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycol Res 104:1354–1365

    Google Scholar 

  • Hogarth PJ (2007) The biology of mangroves and seagrasses, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Horn BW (2003) Ecology and population biology of aflatoxigenic fungi in soil. J Toxicol —Toxin Rev 22:351–379

    Google Scholar 

  • Horn BW, Dorner JW (2002) Effect of competition and adverse culture conditions on aflatoxin production by Aspergillus flavus through successive generations. Mycologia 94:741–751

    Google Scholar 

  • Horner WE, Helbling A, Salvaggio JE, Lehrer SB (1995) Fungal allergens. Clin Microbiol Rev 8:161–179

    Google Scholar 

  • Horré R, Symoens F, Delhaes L, Bouchara J-P (2010) Fungal respiratory infections in cystic fibrosis: a growing problem. Med Mycol 48:S1–S3. https://doi.org/10.3109/13693786.2010.529304

    Google Scholar 

  • Hu FB, Persky V, Flay BR, Richardson J (1997) An epidemiological study of asthma prevalence and related factors among young adult. Br Med J 34:67–76

    Google Scholar 

  • Huang X, Lu X, Li Y, Li X, Li J-J (2014) Improving itaconic acid production through genetic engineering of an industrial Aspergillus terreus strain. Microb Cell Factories 113(119):1–9

    Google Scholar 

  • Huffnagle GB, Noverr MC (2013) The emerging world of the fungal microbiome. Trends Microbiol 21:334–341. https://doi.org/10.1016/j.tim.2013.04.002

    Google Scholar 

  • Hurst PL, Nielsen J, Sullivan PA, Shepherd MG (1977) Purification and properties of a cellulase from Aspergillus niger. Biochem J 165(1):33–41

    Google Scholar 

  • Hyde KD, Jones EBG, Leano E, Pointing SB, Poonyth AD, Vrijmoed LLP (1998) Role of fungi in marine ecosystems. Biodivers Conserv 7:1147–1161

    Google Scholar 

  • Iamanaka BT, Taniwaki MH, Menezes HC et al (2005) Incidence of toxigenic fungi and ochratoxin A in dried fruits sold in Brazil. Food Addit Contam 22:1258–1263

    Google Scholar 

  • Ikeda Y, Park EY, Okuda N (2006) Bioconversion of waste office paper to gluconic acid in a turbine blade reactor by the filamentous fungus Aspergillus niger. Bioresour Technol 97(8):1030–1035

    Google Scholar 

  • Imran ZK, Al Rubaiy AA (2015) Molecular ecological typing of wild type Aspergillus terreus from arid soils and screening of lovastatin production. Afr J Microbiol Res 9(8):534–542

    Google Scholar 

  • Ingram CJE, Mulcare CA, Itan Y, Thomas MG, Swallow DM (2009) Lactose digestion and the evolutionary genetics of lactase persistence. Hum Genet 124(6):579–591

    Google Scholar 

  • Irbe I, Andersone I, Andersons B (2009) Diversity and distribution of wood decay fungi and wood discoloring fungi in buildings in Latvia. LLU Raksti 23(318):91–102

    Google Scholar 

  • Ismail ALS, Abdullah SK (1977) Studies on the soil fungi of Iraq. Proc Indian Acad Sci 86:151–154

    Google Scholar 

  • Ito Y, Sasaki T, Kitamoto K, Kumagai C, Takahashi K, Gomi K et al (2002) Cloning, nucleotide sequencing, and expression of the beta-galactosidase-encoding gene (lacA) from Aspergillus oryzae. J Gen App Microbiol 48(3):135–142

    Google Scholar 

  • Ivarson KC (1965) The microbiology of some permafrost soils in the McKenzie Valley, N.W.T. Arctic 18:256–260

    Google Scholar 

  • Jabra-Rizk MA, Ferreira SM, Sabet M, Falkler WA, Merz WG, Meiller TF (2001) Recovery of Candida dubliniensis and other yeasts from human immunodeficiency virus associated periodontal lesions. J Clin Microbiol 39:4520–4522

    Google Scholar 

  • Jaime-Garcia R, Cotty PJ (2010) Crop rotation and soil temperature influence the community structure of Aspergillus flavus in soil. Soil Biol Biochem 42:1842–1847

    Google Scholar 

  • Jahromi MH, Liang JB, Ho WH, Mohamad R, Goh YM, Shokryazdan P. 2012. Lovastatin production by Aspergillus terreus using agro-biomass as substrate in solid state fermentation J Biomedicine and Biotech, https://doi.org/10.1155/2012/196264

  • Jaime-Garcia R, Cotty PJ (2006) Spatial relationships of soil texture and crop rotation to Aspergillus flavus community structure in South Texas. Phytopathology 96:599–607

    Google Scholar 

  • Jin H, Lei H, Jianping L, Zhinan X, Peilin C (2010) Organic chemicals from bioprocesses in China. Adv Biochem Eng Biotechnol 122:43–71

    Google Scholar 

  • Jinka R, Ramakrishna V, Rao S, Rao RP (2009) Purification and characterization of cysteine protease from germinating cotyledons of horse gram. BMC Biochem 10:1–11

    Google Scholar 

  • Junior PRJ, Yamamoto ACA, Amadio JVR, Martins ER, Leal FA et al (2012) Trichocomaceae: biodiversity of Aspergillus spp and Penicillium spp residing in libraries. J Infect Dev Ctries 6(10):734–743

    Google Scholar 

  • Jurjević Ž, Peterson SW, Horn BW (2012) Aspergillus section Versicolores: nine new species and multilocus DNA sequence based phylogeny. IMA Fungus 3:59–79

    Google Scholar 

  • Kareem SO, Akpan I, Alebiowu OO (2010) Production of citric acid by Aspergillus niger using pineapple waste. Malays J Microbiol 6(2):161–165

    Google Scholar 

  • Kariya M, Shigemi Y, Yano M, Konno H, Takii Y (2003) Purification and properties of α-amylase from Aspergillus oryzae MIBA316. J Biol Macromol 3(2):57–60

    Google Scholar 

  • Kathiresan K, Bingham BL (2001) Biology of mangroves and mangrove ecosystems. Adv Mar Biol 40:81–251

    Google Scholar 

  • Kawai Y, Otaka M, Kakio M, Oeda Y, Inoue N, Shinano H (1994) Screening of antioxidant-producing fungi in Aspergillus niger Group for Liquid- and Solid-State Fermentation. Bull Fac Fish Hokkaido Univ Hakodate 45:26–31. https://doi.org/10.1515/9783110824469.X

    Google Scholar 

  • Keilin D, Mann T (1939) Laccase, a blue copper-protein oxidase from the latex of Rhus succedanea. Nature 143:23–24

    Google Scholar 

  • Kelecom A (2002) Secondary metabolites from marine microorganisms. An Acad Bras Cienc 74:151–170

    Google Scholar 

  • Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism: from biochemistry to genomics. Nat Rev Microbiol 3(12):937–947

    Google Scholar 

  • Khalil AMA, El-sheikh HH, Sultan MH (2013) Distribution of fungi in mangrove soil of coastal areas at Nabq and Ras Mohammed protectorates. Int J Curr Microbiol App Sci 2(12):264–274

    Google Scholar 

  • Khan AA, Bacha N, Ahmad B, Lutfullah G, Farooq U, Cox RJ (2014) Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites. Asian Pac J Trop Biomed 4(11):859–870

    Google Scholar 

  • Kin R, T Sai and S So (1998) Itaconate copolymer with quadratic nonlinear optical characteristic. JP Patent No. 10,293,331

    Google Scholar 

  • Klement T, Büchs J (2013) Itaconic acid—a biotechnological process in change. Bioresour Technol 135:422–431

    Google Scholar 

  • Klich MA (2002a) Biogeography of Aspergillus species in soil and litter. Mycologia 94(1):21–27

    Google Scholar 

  • Klich MA (2002b) Identification of common Aspergillus Species. Centraalbureau voor Schimmelcultures, Utrecht

    Google Scholar 

  • Kohli P, Gupta R (2015) Alkaline pectinases: a review. Biocatal Agric Biotechnol 4:279–285

    Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology the higher fungi. In: Academic Press. NY. Habitats, New York

    Google Scholar 

  • König GM, Kehraus S, Seibert SF, Abdel-Lateff A, Müller D (2006) Natural products from marine organisms and their associated microbes. Chem Bio Chem 7:229–238

    Google Scholar 

  • Kredics L, Hatvani L, Naeimi S, Körmöczi P, Manczinger L, Vagvolgyi C, Druzhinina I (2014) Biodiversity of the genus Hypocrea/Trichoderma in different habitats. In: Gupta VG, Schmoll M, Herrera-Estrella A (eds) Biotechnology and Biology of Trichoderma. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-444-59576-8.00001-1

    Google Scholar 

  • Krishnan A, Alias SA, Michael Wong CVL, Pang KL, Convey P (2011) Extracellular hydrolase enzyme production by soil fungi from King George Island, Antarctica. Polar Biol 4:1535–1542

    Google Scholar 

  • Krnjaja V, Stojanovic LJ, Tomic Z, Nesic Z (2008) The presence of potentially toxigenic fungi in dairy cattle feed with focus on species of genus Аspergillus. J Mountain Agric Balkans 11:621–630

    Google Scholar 

  • Kubanek J, Jensen PR, Keifer PA, Sullards MC, Collins DO, Fenical W (2003) Seaweed resistance to microbial attack: a targeted chemical defense against marine fungi. Proc Natl Acad Sci U S A 100:6916–6921

    Google Scholar 

  • Kumar R, Sharma J, Singh R (2007) Production of tannase from Aspergillus ruber under solid-state fermentation using jamun (Syzygium cumini) leaves. Microbiol Res 162:384–390

    Google Scholar 

  • Kumar V, Yadav AN, Verema P, Sangwan P, Abhishake S, Singh B (2017) β-Propeller phytases: diversity, catalytic attributes, current developments and potential biotechnological applications. Int J Biol Macromolec 98:595–609

    Google Scholar 

  • Kunamneni A, Ballesteros A, Plou FJ, Alcalde M (2007) Fungal laccase—a versatile enzyme for biotechnological applications. In: Méndez-Vilas A (ed) Communicating current research educational topics trends applied microbiology. Formex, Badajoz, pp 233–245

    Google Scholar 

  • Kurakov AV, Somova NG, Ivanovskii RN (1999) Micromycetes populating limestone and red brick surfaces of the Novodevichii Convent masonry. Microbiologia 68:232–241

    Google Scholar 

  • Kurtzman CP, Horn HB, Hesseltine CW (1987) Aspergillus nomius: a new aflatoxin-producing species related to Aspergillus flavus and Aspergillus tamarii. J Microbiol 12:85–87

    Google Scholar 

  • Kusari S, Lamshoft M, Spiteller M (2009) Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol 107:1019–1030

    Google Scholar 

  • Lal D, Gardner JJ (2012) Production, characterization and purification of tannase from Aspergillus niger. Eur J Exp Biol 2:1430–1438

    Google Scholar 

  • Lam C, Stang A, Harder T (2008) Planktonic bacteria and fungi are selectively eliminated by exposure to marine macroalgae in close proximity. FEMS Microbiol Ecol 63:283–291

    Google Scholar 

  • Lee LS, Bennett JW, Cucullu AF, Stanley JB (1975) Synthesis of versicolorin A by a mutant of Aspergillus parasiticus deficient in aflatoxin production. J Agric Food Chem 23:1132–1134

    Google Scholar 

  • Lee OO, Wang Y, Yang J, Lafi FF, Al-Suwailem A, Qian PY (2010) Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. ISME J 5:650–664

    Google Scholar 

  • Lee SM, Li XF, Jiang H, Cheng JG, Seong S, Choi HD, Son BW (2003) Terreusinone, a novel UV-A protecting dipyrroloquinone from marine algicolous fungus Aspergillus terreus. Tetrahedron Lett 44:7707–7710

    Google Scholar 

  • Lehn JM, Malmstrom BG, Selin E, Oblad M (1986) Metal analysis of the laccase of Gabriel Bertrand. Reflections Biochem. https://doi.org/10.1016/0968-0004(86)90013-7

  • Lekha PK, Lonsane BK (1997) Production and application of tannin acyl hydrolsase: state of the art. Adv Appl Microbiol 44:215–260

    Google Scholar 

  • Lević J, Gošić-Dondo S, Ivanović D, Stanković S, Krnjaja V, Boćarov-Stancić A, Stepanic A (2013) An outbreak of Aspergillus species in response to environmental conditions in Serbia. Pestic Phytomed (Belgrade) 28:167–179

    Google Scholar 

  • Li A, van Luijk N, ter Beek M, Caspers M, Punt P, van der Werf M (2011) A clone-based transcriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus. Fungal Genet Biol 3:602–611

    Google Scholar 

  • Li Q, Wang G (2009) Diversity of fungal isolates from three Hawaiian marine sponges. Microbiol Res 164:233–241

    Google Scholar 

  • Li WC, Zhou J, Guo SY, Guo LD (2007) Endophytic fungi associated with lichens in Baihua mountain of Beijing. China Fungal Divers 25:69–80

    Google Scholar 

  • Li XJ, Zhang Q, Zhang AL, Gao JM (2012) Metabolites from Aspergillus fumigatus, an endophytic fungus associated with Melia azedarach, and their antifungal, antifeedant, and toxic activities. J Agr Food Chem 60:3424–3431

    Google Scholar 

  • Liaud N, Giniés C, Navarro D, Fabre N, Crapart S, Herpoël-Gimbert I, Levasseur A, Raouche S, Sigoillot J-C (2014) Exploring fungal biodiversity: organic acid production by 66 strains of filamentous fungi. Fungal Biol Biotech 1:1–10

    Google Scholar 

  • Lin A, Lu X, FangY ZT, Gu Q, Zhu W (2008) Two new 5-Hydroxy-2-pyrone derivatives isolated from a marine-derived fungus Aspergillus flavus. J Antibiot 61:245–249

    Google Scholar 

  • Lin W, Brauers G, Ebel R, Wray V, Berg A, Sudarsono PP (2003) Novel chromone derivatives from fungus Aspergillus versicolor isolated from the marine sponge Xestospongia exigua. J Nat Prod 66:57–61

    Google Scholar 

  • Liu TPSL, Brandão Costa RMP, de Vasconcelos Freitas DJ, Oliveira Nacimento C, de Souza Motta CM, Bezerra RP, Nunes Herculano P, Porto ALF (2017) Tannase from Aspergillus melleus improves the antioxidant activity of green tea: purification and biochemical characterisation. Int J Food Sci Technol 52:652–661

    Google Scholar 

  • Liu W, Li C, Zhu P, Yang J, Cheng K (2010) Phylogenetic diversity of culturable fungi associated with two marine sponges: Haliclona simulans and Gelliodes carnosa, collected from the Hainan Island coastal waters of the South China Sea. Fungal Divers 42:1–15

    Google Scholar 

  • Londero AT, Guadalupe-Cortés JM (1990) Aspergiloses Pulmonares. J Pneumologia 16:78–90

    Google Scholar 

  • Lopez-Diaz TM, Flannigan B (1997) Production of patulin and cytochalasin E by Aspergillus clavatus during malting of barley and wheat. Int J Food Microbiol 35:129–136

    Google Scholar 

  • Lu F, Ping K, Wen L, Zhao W, Wang Z, Chu J, Zhuang Y (2015) Enhancing gluconic acid production by controlling the morphology of Aspergillus niger in submerged fermentation. Process Biochem 50:1342–1348

    Google Scholar 

  • Ma W, F-f Z, Ye Q, Z-x H, Yan D, Hou J, Yang Y (2014) Production and partial purification of tannase from Aspergillus ficuum Gim. 3.6. Prep Biochem Biotechnol 45:754–768

    Google Scholar 

  • Madavasamy S, Pannerselvam A (2012) Isolation, identification of fungi from Avecinnia marina Muthupet mangroves Thiruvarur Dt. Asian J Plant Sci Res 2:452–459

    Google Scholar 

  • Magnoli C, Astoreca A, Ponsone L, Combina M, Palacio G, Rosa CAR, Dalcero AM (2004) Survey of mycoflora and ochratoxin A in dried vine fruits from Argentina markets. Lett Appl Mycobiol 39:326–331

    Google Scholar 

  • Magnuson JK, Lasure LL (2004) Organic acid production by filamentous fungi. In: Tkacz JS, Lange L (eds) Advances in fungal biotechnology for industry, agriculture, and medicine. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8859-1_12

    Google Scholar 

  • Maheshwari M (2003) Microbial production of pectinases from coffee pulp waste. Paper Presented at 44th Annual Conference of Association of Microbiologists of India, Dharwad, pp 12–14

    Google Scholar 

  • Mahmoud SAZ, Abou El-Fadle M, El-Mofty M (1964) Studied on the rhizosphere microflora of a desert plants. Folia Microbiol (Praha) 9:1–8

    Google Scholar 

  • Maksimainen MM, Lampio A, Mertanen M, Turunen O, Rouvinen J (2013) The crystal structure of acidic β-galactosidase from Aspergillus oryzae. Int J Biol Macromol 60:109–115

    Google Scholar 

  • Mander GJ, Wang H, Bodie E, Wagner J, Vienken K, Vinuesa C, Foster C, Leeder AC, Allen G, Hamill V, Janssen GG, Dunn-Coleman N, Karos M, Lemaire HG, Subkowski T, Bollschweiler C, Turner G, Nüsslein B, Fischer R (2006) Use of laccase as a novel, versatile reporter system in filamentous fungi. Appl Environ Microbiol 72:5020–5026

    Google Scholar 

  • Manoharachary C, Kunwar IK, Tilak KV (2013) Diversity and characterization of fungi and its relevance. Indian Phytopath 66:10–13

    Google Scholar 

  • Mapari SAS, Thrane U, Meyer AS (2010) Fungal polyketide azaphilone pigments as future natural food colorants. Trends Biotechnol 28:300–307

    Google Scholar 

  • Marguet C, Favennec L, Matray O, Bertout S, Giraud S, Couderc L, Zouhair R, Leguillon C, Gargala G, Ballet J-JJ, Bouchara J-P (2012) Clinical and microbiological efficacy of micafungin on Geosmithia argillacea infection in a cystic fibrosis patient. Med Mycol Case Rep 1:79–81

    Google Scholar 

  • Marín S, Ramos AJ, Sanchis V (2012) Modeling Aspergillus flavus growth and aflatoxins production in pistachio nuts. Food Microbiol 32:378–388

    Google Scholar 

  • Masic Z, Bocarov-Stancic A, Sinovec Z, Dilas S, Adamovic M (2003) Mycotoxin in feed for animals in the Republic of Serbia. 10th Symposium Food Technology for Animal Safety and Quality, Vrnjačka Banja, Serbia and Montenegro. Book of Prooceedings

    Google Scholar 

  • Mata-Gomez M, Rodriguez LV, Ramos EL, Renovato J, Cruz-Hernandez MA, Rodriguez R, Contreras J, Aguilar CN (2009) A novel tannase from the xerophilic fungus Aspergillus niger GH1. J Microbiol Biotechnol 19:987–996

    Google Scholar 

  • Max B, Salgado JM, Rodríguez N, Cortés S, Converti A, Domínguez JM (2010) Biotechnological production of citric acid. Braz J Microbiol 41:862–875

    Google Scholar 

  • Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:551–565

    Google Scholar 

  • McGinnis MR (2007) Indoor mould development and dispersal. Med Mycol 4:1–9

    Google Scholar 

  • Medina A, Mateo R, Lopez-Ocana L, Valle-Algarra FM, Jiménez M (2005) Study of Spanish grape mycobiota and ochratoxin A production by isolates of Aspergillus tubingensis and other members of Aspergillus section Nigri. Appl Environ Microbiol 71:4696–4702

    Google Scholar 

  • Mehl HL, Cotty PJ (2013) Influence of plant host species on intraspecific competition during infection by Aspergillus flavus. Plant Pathol 62:1310–1318

    Google Scholar 

  • Menezes CBA, Bonugli-Santos RC, Miqueletto PB, Passarini MRZ, Silva CHD, Justo MR, Leal RR, Fantinatti-Garboggini F, Oliveira VM, Berlinck RGS, Sette LD (2010) Microbial diversity associated with algae, ascidians and sponges from the north coast of Sao Paulo state, Brazil. Microbiol Res 165:466–482

    Google Scholar 

  • Mislivec PB, Dieter CT, Bruce VR (1975) Effect of temperature and relative humidity on spore germination of mycotoxic species of Aspergillus and Penicillium. Mycologia 67:1187–1189

    Google Scholar 

  • Mitsuyasu O, Dwiarti L, Shin K, Enoch PY (2009) Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl Microbiol Biotechnol 84:597–606

    Google Scholar 

  • Molliard M (1922) Sur Une nouvelle fermentation acide produite par le Sterigmatocystis nigra (A new acidic fermentation by Sterigmatocystis nigra). CR Acad Sci 174:881–883

    Google Scholar 

  • Montasir AH, Mostafa MA, Elwan SH (1956a) Development of soil microflora under Zygophyllum album L. and Zygophyllum coccineum L. Ain Shams Sci Bull 1:9–22

    Google Scholar 

  • Montasir AH, Mostafa MA, Elwan SH (1956b) Development of soil microflora in relation to vegetation along a transect line at yellow hills, North Cairo. Ain Shams Sci Bull 1:23–32

    Google Scholar 

  • Moss MO (1977) Aspergillus mycotoxins. In: Smith JE, Patlman JA (eds) Genetics and physiology of Aspergillus. Academic Press, New York and London, pp 499–524

    Google Scholar 

  • Moubasher AH (1993) Soil fungi of Qatar and other Arab Countries. Centre for Scientific and Applied Research, University of Qatar, Doha

    Google Scholar 

  • Moubasher AH, Abdel-Hafez SII (1978) Studies on the mycoflora of Egyptian soils. Mycopathologia 63:3–10

    Google Scholar 

  • Moubasher AH, Abdel-Hafez SII, Bagy MMK, Abdel-Sater MA (1990) Halophilic and halotolerant fungi in cultivated, desert and salt marsh soils from Egypt. Acta Mycol 27:65–81

    Google Scholar 

  • Moubasher AH, Abdel-Hafez SII, El-Maghraby OMO (1985) Studies on soil mycoflora of Wadi Bir- El- Ain, Eastern Desert. Egypt Cryptogamie Mycol 6:129–143

    Google Scholar 

  • Moubasher AH, Abdel-Hafez SII, El-Maghraby OMO (1988) Seasonal fluctuations of soil and air borne fungi of Wadi Bir- El-Ain in Eastern Desert of Egypt. Nat Monspel Ser Bot 52:57–70

    Google Scholar 

  • Moubasher AH, El-Dohlob SM (1970) Seasonal fluctuation of Egyptian soil fungi. Trans Brit Mycol Soc 54:45–51

    Google Scholar 

  • Moubasher AH, Moustafa AF (1970) A survey of Egyptian soil fungi with special reference to Aspergillus, Penicillium and Penicillium related genera. Trans Brit Mycol Soc 54:35–44

    Google Scholar 

  • Moubasher AH, Moustafa AF (1972) Aspergillus aegyptiacus sp. nov Egypt J Bot 15:153–154

    Google Scholar 

  • Mouchaca J (1985) Les champignons. In: Balout DL, Roubet C (eds) La momie de Ramses II Editions. Recherches sur les Civilisations, Paris, pp 119–152

    Google Scholar 

  • Mouchacca J (1971) Pseudeurotium desertorum sp nov. Rev Mycol 36:123–127

    Google Scholar 

  • Mouchacca J (1973a) Deux Alternaria des sols arides d’Egypte: A. chlamydospora sp. nov. et A. phragmospora van Emden. Mycopathol Mycol Appl 50:217–225

    Google Scholar 

  • Mouchacca J (1973b) Les Thielavia des sols arides: espèces nouvelles et analyse générique. Bulletin de la Société Mycologique de France 89:295–311

    Google Scholar 

  • Mouchacca J (1977) Sur un nouveau Discomycetes Ascobolus egyptiacus Travaux dédiès à G. Viennot-Bourgin. Société Francaise de Phytopathologoie, Paris, pp 236–267

    Google Scholar 

  • Mouchacca J (1982) Etude analytique de la mycoflore de quelques sols de régions arides de l’Egypte. Thèse de Doctorat d’Etat, Muséum National d’Histoire Naturelle et Université Pierre et Marie Curie (Paris VI), 247 p

    Google Scholar 

  • Mouchacca J (1995) Check-list of novel fungi from the Middle East described mainly from soil since 1930. Sydowia 47:240–257

    Google Scholar 

  • Mouchacca J, Joly P (1976) Etude de la mycoflore des sols arides de l’Egypte. II. Le genre Aspergillus. Revue d’Ecologie et de. Biologie du Sol 13:293–313

    Google Scholar 

  • Mouchacca J, Joly P (1974) Etude de la mycoflore des sols arides de l’Egypte. I. Le genre Penicillium. Revue d’Ecologie et de. Biologie du Sol 11:67–88

    Google Scholar 

  • Mouchacca J, Nicot J (1973) Les Fusariella des sols arides. Revue de Mycologie 37:168–182

    Google Scholar 

  • Moustafa AF (1975) Osmophilous fungi in the salt marshes of Kuwait. Can J Microbiol 21:1573–1580

    Google Scholar 

  • Moyer AJ, Umberger EJ, Stubbs JJ (1940) Fermentation of concentrated solutions of glucose to gluconic acid. Improved process. Ind Eng -Chem, Ind Ed 32:1379–1383

    Google Scholar 

  • Mukherjee G, Mishra T, Deshmukh SK 2017. Fungal Pigments: An Overview. T. Satyanarayana et al. (eds.), Developments in Fungal Biology and Applied Mycology, https://doi.org/10.1007/978-981-10-4768-8_26. Springer Nature Singapore Pte Ltd.

  • Mustafa AI, Abdel-Azeem AM, Salem FM (2013) Surveying and exploitation of some taxa for extracellular biosynthesis of silver nanoparticles. Third International Congress on Fungal Conservation, Akyaka, Mugla, Turkey, pp. 11–15, November 2013. Abstract book: 44

    Google Scholar 

  • Muthomi JW, Mureithi BK, Chemining’wa GN, Gathumbi JK, Mutitu EW (2012) Aspergillus species and Aflatoxin B1 in soil, maize grain and flour samples from semi-arid and humid regions of Kenya. Int J AgriSci 2:22–34

    Google Scholar 

  • Myers N, Mittermeier A, Mittermeier CG, da Fonseca AB, Kent I (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Google Scholar 

  • Naguib AI, Mouchacca J (1970–1971) The mycoflora of Egyptian desert soils. Bulletin de l’Institut d’Egypte 52:37–61

    Google Scholar 

  • Naim MS (1967a) Contribution to the knowledge of soil fungi in Libya. Rhizosphere and soil fungi of Artemisia herba alba in Tripoli. Mycopath Mycol Appl 31:296–299

    Google Scholar 

  • Naim MS (1967b) Contribution to the knowledge of soil fungi in Libya. II. Fungus flora under Citrus trees in Libya. Mycopath Mycol Appl 31:300–304

    Google Scholar 

  • Nassar MSM (1998) Soil mycoflora of Wadi Abu-Subayrah at Aswan region at Eastern Desert of Egypt. Egypt J Bot 38:21–46

    Google Scholar 

  • Ncube T, Howard RL, Abotsi EK, van Rensburg ELJ, Ncube I (2012) Jatropha curcas seed cake as substrate for production of xylanase and cellulase by Aspergillus niger FGSCA733 in solid-state fermentation. Ind Crop Prod 37:118–123

    Google Scholar 

  • Negi S, Benerjee R (2006) Optimization of amylase and protease production from Aspergillus awamori in single bioreactor through EVOP factorial design technique. Food Technol Biotechnol 44:257–261

    Google Scholar 

  • Nguyen QD, Rezessy-Szabo JM, Claeyssens M, Stals I, Hoschke A (2002) Purification and characterisation of amylolytic enzymes from thermophilic fungus Thermomyces lanuginosus strain ATCC 34626. Enzymes Microbial Technol 31:345–352

    Google Scholar 

  • Nilsson T, Daniel G, Kirk KT, Obst JR (1989) Chemistry and microscopy of wood decay by some higher ascomycetes. Holzforschung 43:11–18

    Google Scholar 

  • Ogawa A, Wakisaka Y, Tanaka T, Sakiyama T, Nakanishi K (1995) Production of kojic acid by membrane-surface liquid culture of Aspergillus oryzae NRRL484. J Ferment Bioeng 80:41–45

    Google Scholar 

  • Oren A (2002) Halophilic microorganisms and their environments cellular origin and life in extreme habitats and astrobiology 5:233–267

    Google Scholar 

  • Osman ME, Khattab OH, Zaghlol GM, Abd El-Hameed RM (2011) Optimization of some physical and chemical factors for lovastatin productivity by local strain of Aspergillus terreus. Aust J Basic Appl Sci 5:718–732

    Google Scholar 

  • Oyeleke SB, Egwim EC, Auta SH (2010) Screening of Aspergillus flavus and Aspergillus fumigatus strains for extracellular protease enzyme production. J Microbiol Antimicrob 2:83–87

    Google Scholar 

  • Ozerskaya S, Kochkina G, Ivanushkina N, Gilichinsky DA (2009) Fungi in permafrost. In: Margesin R (ed) Permafrost soils. Soil biology, vol 16. Springer, Berlin, pp 85–95

    Google Scholar 

  • Palencia ER (2012) Endophytic associations of species in the Aspergillus section Nigri with maize (Zea mays) and peanut (Arachis hypogea) hosts, and their mycotoxins. University of Georgia, USA.

    Google Scholar 

  • Pandey A, Benjamin S, Soccol CR, Nigam P, Kriger N, Soccol VT (1999) The realm of microbial lipases in biotechnology. Biotechnol Appl Biochem 29:119–131

    Google Scholar 

  • Pandey A, Webb C, Soccol CR, Larroche C (2006) Enzyme technology. Springer Science & Business Media, New York, NY

    Google Scholar 

  • Paranthaman R, Vidyalakshmi R, Murugesh S, Singaravadivel K (2008) Optimisation of fermentation conditions for production of tannase enzyme by Aspergillus oryzae using sugarcane baggasse and rice straw. Global J Biotechnol Biochem 3:105–110

    Google Scholar 

  • Pathan AAK, Bhadra B, Begum Z, Shivaji S (2009) Diversity of yeasts from puddles in the vicinity of Midre Lovénbreen glacier, Arctic and bioprospecting for enzymes and fatty acids. Curr Microbiol 60:307–314

    Google Scholar 

  • Paz Z, Komon-Zelazowska M, Druzhinina IS, Aveskamp MM, Shnaiderman A, Aluma Y, Carmeli S, Ilan M, Yarden O (2010) Diversity and potential antifungal properties of fungi associated with a Mediterranean sponge. Fungal Divers 42:17–26

    Google Scholar 

  • Perrone G, Mulè G, Susca A, Battilani P, Pietri A, Logrieco A (2006) Ochratoxin A production and amplified fragment length polymorphism analysis of Aspergillus carbonarius, Aspergillus tubingensis and Aspergillus niger strains isolated from grapes in Italy. Appl Environ Microbiol 72:680–685

    Google Scholar 

  • Petrini O (1991) Fungal Endophytes of tree leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves, Brock/Springer series in contemporary bioscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3168-4_9

    Google Scholar 

  • Pettersson O, Leong S-l L (2011) Fungal Xerophiles (Osmophiles). eLS John Wiley & Sons Ltd, Chichester

    Google Scholar 

  • Pimentel M, Lembo A, Chey W, Zakko S, Ringel Y, Yu J, Mareya SM, Shaw AL, Bortey E, Forbes WP (2011) Rifaximin therapy for patients with irritable bowel syndrome without constipation. N Engl J Med 364:22–32

    Google Scholar 

  • Pinar G, Piombino-Mascali D, Maixner F, Zink A, Sterflinger K (2013) Microbial survey of the mummies from the Capuchin Catacombs of Palermo, Italy: biodeterioration risk and contamination of the indoor air. FEMS Microbiol Ecol 86:341–356

    Google Scholar 

  • Pinto GAS, Leite SGF, Terzi SC, Couri S (2001) Selection of tannase producing Aspergillus niger strains. Braz J Microbiol 32:24–26

    Google Scholar 

  • Piontelli E, SM MT, Giusiano G, Vivar V (2002) Distribución altitudinal de hongos queratinófilos, epífitos y endófitos en suelos desérticos del norte chileno (II Región, 23° LS Y 68° LW). Boletín Micológico 17

    Google Scholar 

  • Proksch P, Ebel R, Edrada R et al (2008) Sponge-associated fungi and their bioactive compounds: the Suberites case. Bot Mar 51:209–218

    Google Scholar 

  • Qiao MF, Ji NY, Liu XH, Li K, Zhu QM, Xue QZ (2010) Indoloditerpenes from an algicolous isolate of Aspergillus oryzae. Bioorg Med Chem Lett 20:5677–5680

    Google Scholar 

  • Quilico A, Panizzi L, Mugnaini E (1949) Structure of flavoglaucin and auroglaucin. Nature 164(4157):26

    Google Scholar 

  • Oren A (2002) Halophilic microorganisms and their environments Cellular origin and life in extreme habitats and astrobiology. Kluwer Academic, Dordrecht, the Netherlands

    Google Scholar 

  • Raghukumar C, Raghukumar S, Sharma S, Chandramohan D (1992) Endolithic fungi from deep sea calcareous substrata: isolation and laboratory studies. In: Desai BN (ed) Oceanography of the Indian Ocean Oxford and IBH. Oxford & IBH Pub. Co., New Delhi, pp 3–9

    Google Scholar 

  • Raghunath R, Radhakrishna A, Angayarkanni J, Palaniswamy M (2012) Production and cytotoxicity studies of lovastatin from Aspergillus niger PN2 an endophytic fungi isolated from Taxus baccata. Int J Appl Biol Pharm Technol 3:342–351

    Google Scholar 

  • Raistrick H (1940) Biochemistry of the lower fungi. Annu Rev Biochem 9:571–592

    Google Scholar 

  • Ramachandran S, Fontanille P, Pandey A, Larroche C (2006) Gluconic acid: properties, applications and microbial production. Food Technol Biotechnol 44:185–195

    Google Scholar 

  • Ramachandran S, Fontanille P, Pandey A, Larroche C (2008) Permeabilization and inhibition of the germination of spores of Aspergillus niger for gluconic acid production from glucose. Bioresour Technol 99:4559–4565

    Google Scholar 

  • Ramos JAT, Barends S, Verhaert RMD, de Graaff LH (2011) The Aspergillus niger multicopper oxidase family: analysis and overexpression of laccase-like encoding genes. Microb Cell Factories 10:78

    Google Scholar 

  • Rana KL, Kour D, Verma P, Yadav AN, Kumar V, Singh DH (2017) Diversity and biotechnological applications of endophytic microbes associated with maize (Zea mays L.) growing in Indian Himalayan regions. In: Proceeding of National Conference on advances in food science and technology, The National Academy of Sciences, India (NASI), Abstract book pp 41–42

    Google Scholar 

  • Rana KL, Kour D, Yadav AN, Kumar V, Dhaliwal HS (2016a) Biotechnological applications of endophytic microbes associated with barley (Hordeum vulgare L.) growing in Indian Himalayan regions. In: Proceeding of 86th Annual Session of NASI & Symposium on “Science, Technology and Entrepreneurship for Human Welfare in The Himalayan Region”, the National Academy of Sciences, India (NASI), Abstract book p 80.

    Google Scholar 

  • Rana KL, Kour D, Yadav AN, Kumar V, Dhaliwal HS (2016b) Endophytic microbes from wheat: diversity and biotechnological applications for sustainable agriculture. In: Proceeding of 57th association of microbiologist of India & International symposium on “microbes and biosphere: What’s new What’s next”, p 453

    Google Scholar 

  • Rank C, Nielsen K, Larsen TO, Varga J, Samson RA, Frisvad JC (2011) Distribution of sterigmatocystin in filamentous fungi. Fungal Biol 115:406–420

    Google Scholar 

  • Raper KB, Fennell DI (1965) The genus . Baltimore: Williams & Wilkins

    Google Scholar 

  • Ratnasri PV, Lakshmi BKM, Ambika Devi K, Hemalatha KPJ (2014) Isolation, characterization of Aspergillus fumigatus and optimization of cultural conditions for amylase production. Int J Res Eng Technol 3:457–463

    Google Scholar 

  • Rayss T, Borut S (1958) Contribution to the knowledge of soil fungi in Israel. Mycopathol Mycol Applicata (Mycopathologia) 10:142–174

    Google Scholar 

  • Reeve JN, Christner BC, Kvitko BH, Mosley-Thompson E, Thompson LG (2002) Life in glacial ice (Abstract). In: Rossi M, Bartolucci S, Ciaramella M, Moracci M (eds) “Extremophiles 2002,” 4th international congress on extremophiles 2002. Naples, Italy, p 27

    Google Scholar 

  • Rehse K, Lehmke J (1985) Anticoagulante 3-Aryl-5- benzylidentetronsäuren. Arch Pharm 318:11

    Google Scholar 

  • Richard JL, Plattner RD, Mary J, Liska SL (1999) The occurrence of ochratoxin A in dust collected from a problem homehold. Mycopathologia 146:99–103

    Google Scholar 

  • Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114

    Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Google Scholar 

  • Rohr M, Kubicek CP, Kominek J (1983) Gluconic acid. In: Rehm HJ, Reed G (eds) Biotechnology, vol 3. Verlag Chemie, Weinheim, pp 455–465

    Google Scholar 

  • Rosés RP, Guerra NP (2009) Optimization of amylase production by Aspergillus niger in solid-state fermentation using sugarcane bagasse as solid support material. World J Microbiol Biotechnol 25:1929–1939

    Google Scholar 

  • Rosfarizan M, Arbakariya A, Hassan MA, Karim MIA, Hiroshi S, Suteaki S (2002) Importance of carbon source feeding and pH control strategies for maximum kojic acid production from sago starch by Aspergillus flavus. J Biosci Bioeng 94:99–105

    Google Scholar 

  • Roukas T (2000) Citric and gluconic acid production from fig by Aspergillus niger using solid-state fermentation. J Ind Microbiol Biotechnol 25:298–304

    Google Scholar 

  • Roussos S, Zaoula N, Salih G, Tantaoui-Elaraki A, Lamrani K, Cheheb M, Hassouni H, Verhé F, Perraud-Gaime I, Augur C, Ismaili-Alaoui M (2006) Characterization of filamentous fungi isolated from Moroccan olive and olive cake: toxigenic potential of Aspergillus strains. Molec Nutr Food Res 50:500–506

    Google Scholar 

  • Ruisi S, Barreca D, Selbmann L, Zucconi L, Onofri S (2007) Fungi in Antarctica. Rev Environ Sci Biotechnol 6:127–141

    Google Scholar 

  • Saadabi AMA (2006) On the Fungal Flora of Saudi Arabian Soils. Research Journal of Microbiology 1:280–284

    Google Scholar 

  • Sage L, Garon D, Seigle-Murandi F (2004) Fungal microflora and ochratoxin. A risk in French vineyards. J Agric Food Chem 52:5764–5768

    Google Scholar 

  • Sage L, Krivobok S, Delbos E, Seigle-Murandi F, Creppy EE (2002) Fungal flora and ochratoxin A production in grapes and musts from France. J Agric Food Chem 50:1306–1311

    Google Scholar 

  • Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK (2017) Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech 7:1–11

    Google Scholar 

  • Salama AM, Elbatanoni K, Ali MI (1971) Studies on the fungal flora of Egyptian soils. I. Western Mediterranean coast and Libyan Desert. United Arab Republic. J Bot 14:99–114

    Google Scholar 

  • Salem FM, Abdel-Azeem AM (2014) Screening of Anticancer metabolites produced by Endophytic Fungi. LAP LAMBERT Academic Publishing, Saarbrücken

    Google Scholar 

  • Salgado JM, Abrunhosa L, Venâncio A, Dominguez JM, Belo I (2014) Integrated use of residues from olive mill and winery for lipase production by solid state fermentation with Aspergillus sp. Appl Biochem Biotech 172:1832–1845

    Google Scholar 

  • Salonen J, Richardson M, Gallacher K, Issakainen J, Helenius H, Lehtonen O-P, Nikoskelainen J (2000) Fungal colonization of haematological patients receiving cytotoxic chemotherapy: emergence of azole-resistant Saccharomyces cerevisiae. J Hosp Infect 45:293–301

    Google Scholar 

  • Samaniego-Gaxiola JA, Chew-Madinaveitia Y (2007) Diversidad de géneros de hongos del suelo en tres campos con diferente condición agrícola en La Laguna. México Revista mexicana de biodiversidad 78:383–390

    Google Scholar 

  • Samson RA (2010) Food and indoor fungi. CBS-KNAW Fungal Biodiversity Centre, Utrecht

    Google Scholar 

  • Samson RA, Mouchacca J (1975) Additional notes on species of Aspergillus, Eurotium and Emericella from Egyptian desert soil. Antonie Van Leeuwenhoek 41:343–351

    Google Scholar 

  • Samson RA, Mouchacca J (1974) Some interesting species of Emericella and Aspergillus from Egyptian desert soil. Antonie Van Leeuwenhoek 40:121–131

    Google Scholar 

  • Samson RA, Visagie CM, Houbraken J, Hong S-B, Hubka V, Klaassen CHW, Perrone G, Seifert KA, Susca A, Tanney JB, Varga J, Kocsube S, Szigeti G, Yaguchi T, Frisvad JC (2014) Phylogeny, identification and nomenclature of the genus Aspergillus. Stud Mycol 78:141–173

    Google Scholar 

  • Sandri IG, Fontana RC, Barfknecht DM, da Silveira MM (2011) Clarification of fruit juices by fungal pectinases. LWT – Food Sci Technol 44:2217–2222

    Google Scholar 

  • Saric LC, Skrinjar MM (2008) Share of aflatoxigenic molds from genera Aspergillus and Penicillium in mycopopulations isolated from spices for meat processing industry. Pro Nat Sci Matica Srpska Novi Sad 114:115–122

    Google Scholar 

  • Sawstrom C, Mumford P, Marshall W, Hodson A, Laybourn-Parry J (2002) The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79°N). Polar Biol 25:591–596

    Google Scholar 

  • Scherer M, Fischer R (1998) Purification and characterization of Laccase II of Aspergillus nidulans. Arch Microbiol 170:78–84

    Google Scholar 

  • Schreferl G, Kubicek CP, Rohr M (1986) Inhibition of citric acid accumulation by manganese ions in Aspergillus niger mutants with reduced citrate control of phosphofructokinase. J Bacteriol 165:1019–1022

    Google Scholar 

  • Schulz B, Boyle C, Draeger S, Römmert A-K, Krohn K (2002) Endophytic fungi; a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004

    Google Scholar 

  • Schuster GS (1999) Oral flora and pathogenic organisms. Infect Dis Clin N Am 13:757–774

    Google Scholar 

  • Scudamore KA, Atkin PM, Buckle AE (1986) Natural occurrence of the naphtoquinone mycotoxins, xanthomegnin, viomellein and vioxanthin in cereals and animal feedstuffs. J Stored Prod Res 22:81–84

    Google Scholar 

  • Seed PC (2015) The human mycobiome. Cold Spring Harb Perspect Med 5:a019810. https://doi.org/10.1101/cshperspect.a019810

    Google Scholar 

  • Semeniuk G, Harshfield G, Carlson C, Hesseltine C, Kwolek W (1971) Mycotoxins in Aspergillus. Mycopath Mycol Appl 43:137–152

    Google Scholar 

  • Serra R, Abrunhosa L, Kozakiewiez Z, Venâncio A (2003) Black Aspergillus species as ochratoxin A producers in Portuguese wine grapes. Int J Food Microbiol 88:63–68

    Google Scholar 

  • Shearer CA, Descals E, Kohlmeyer B, Kohlmeyer J, Marvanová L, Padgett D, Porter D, Raja HA, Schmit JP, Thorton HA, Voglymayr H (2007) Fungal biodiversity in aquatic habitats. Biodivers Conserv 16:49–67

    Google Scholar 

  • Shehu K, Bello MT (2011) Effect of environmental factors on the growth of Aspergillus species associated with stored millet grains in Sokoto. Nigerian J Basic Appl Sci 19:218–223

    Google Scholar 

  • Shelton BG, Kirkland KH, Flanders WD, Morris GK (2002) Profiles of airborne fungi in buildings and outdoor environments in the United States. Appl Environ Microbiol 68:1743–1753

    Google Scholar 

  • Shi F, Tan J, Chu J, Wang Y, Zhuang Y, Zhang S (2015) A qualitative and quantitative high-throughput assay for screening of gluconate high-yield strains by Aspergillus niger. J Microbiol Method 109:134–139

    Google Scholar 

  • Shrivastava A, Kar K (2009) Characterization and application of tannase produced by Aspergillus niger ITCC 6514.07 on pomegranate rind. Brazil J Microbiol 40:782–789

    Google Scholar 

  • Siala R, Frikha F, Mhamdi S, Nasri M, Kamoun AS (2012) Optimization of acid protease production by Aspergillus niger I1 on shrimp peptone using statistical experimental design. Sci World J 2012:564932. https://doi.org/10.1100/2012/564932

    Google Scholar 

  • Silva MRO, Almeida AC, Arruda FVF, Gusmao N (2011) Endophytic fungi from brazilian mangrove plant Laguncularia racemosa (L.) Gaertn. (Combretaceae): their antimicrobial potential. In: Méndez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances. Formatex, Badajoz, pp 1260–1266

    Google Scholar 

  • Šimonovičová A, Kraková L, Pangallo D, Majorošová M, Piecková E, Bodoriková S, Dörnhoferová M (2015) Fungi on mummified human remains and in the indoor air in the Kuffner family crypt in Sládkovičovo (Slovakia). Int Biodeter Biodegrad 99:157–164

    Google Scholar 

  • Singh P, Raghukumar C, Meea RM, Verma P, Shiuche (2012a) Fungal diversity in deep-sea sediments revealed by culture-dependent and culture independent approaches. Fungal Ecol 5:543–553

    Google Scholar 

  • Singh SM, Singh SK, Yadav LS, Singh PN, Ravindra R (2012b) Filamentous soil fungi from Ny-Alesund, Spitsbergen, and screening for extracellular enzymes. Arctic 65:45–55

    Google Scholar 

  • Sivakumar T, Ravikumar M, Sivakumar N (2006) Abundance of mangrove fungi along the east coast of Tamil Nadu India. Asian J Microbiol Biotech Env Sci 18:589–594

    Google Scholar 

  • Sizova T, Gorlenko M (1967) Mycoflora of mukhafez of Damascus and Es-Suveida (Syria). Mikologia Fitopatdogii 1:286–293

    Google Scholar 

  • Soares I, Távora Z, Barcelos RP, Baroni S (2012) Microorganism produced enzymes in the food industry. In: Valdez B (ed) Scientific, health and social aspects of the food industry. InTech, Rijeka

    Google Scholar 

  • Sohail M, Siddiqi R, Ahmad A, Khan SA (2009) Cellulase production from Aspergillus niger MS82: effect of temperature and pH. New Biotechnol 25:437–441

    Google Scholar 

  • Sommer NF, Buchanan JR, Fortlage RJ (1976) Aflatoxin and sterigmatocystin contamination of pistachio nuts in orchards. Appl Environ Microbiol 32:64–67

    Google Scholar 

  • Souza PM, Aliakbarian B, Ferreira Filho EX, Magalhães PO, Junior AP, Converti A, Perego P (2015) Kinetic and thermodynamic studies of a novel acid protease from Aspergillus foetidus. Int J Biol Macromol 81:17–21

    Google Scholar 

  • Spalding M, Blasco F, Field C (1997) World mangrove atlas. The International Society for Mangrove Ecosystems, Okinawa, p 178

    Google Scholar 

  • Spiering MJ, Greer DH, Schmid J (2006) Effects of the fungal endophyte, Neotyphodium lolii, on net photosynthesis and growth rates of perennial ryegrass (Lolium perenne) are independent of in plant endophyte concentration. Ann Bot 98:379–387

    Google Scholar 

  • Stack ME, Mislivec PB (1978) Production of xanthomegnin and viomellein by isolates of Aspergillus ochraceus, Penicillium cyclopium and Penicillium viridicatum. Appl Environ Microbiol 36:552–554

    Google Scholar 

  • Steiman R, Guiraud P, Sage L, Siegle-Murandi F, Lafond JL (1995) Mycoflora of soil around the Dead Sea I—Ascomycetes (including Aspergillus and Penicillium), Basidiomycetes, Zygomycetes. Syst Appl Microbiol 18:310–317

    Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Google Scholar 

  • Strobel GA, Knighton B, Ren Y, Livinghouse T, Griffin M, Spakowicz D, Sears J (2008) The production of mycodiesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology 154:3319–3328

    Google Scholar 

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, research perspectives. Springer-Verlag, New Delhi. https://doi.org/10.1007/978-81-322-2647-5_7

    Google Scholar 

  • Suryanarayanan TS (2012) Fungal Endosymbionts of seaweeds. In: Raghukumar C (ed) Biology of marine fungi. Progress in molecular and subcellular biology. Springer, Berlin. https://doi.org/10.1007/978-3-642-23342-5_3

    Google Scholar 

  • Suryanarayanan TS, Thirunavukkarasu N, Hariharan GN, Balaji P (2005) Occurrence of non-obligate microfungi inside lichen thalli. Sydowia 57:120–130

    Google Scholar 

  • Suryanarayanan TS, Venkatachalam A, Thirunavukkarasu N, Ravishankar JP, Doble M, Geetha V (2010) Internal mycobiota of marine macroalgae from the Tamilnadu coast: distribution, diversity and biotechnological potential. Bot Mar 53:457–468

    Google Scholar 

  • Tang Y, Lian B, Dong H, Liu D, Hou W (2012) Endolithic bacterial communities in dolomite and limestone rocks from the Nanjiang Canyon in Guizhou Karst area (China). Geomicrobiol J 29:213–225

    Google Scholar 

  • Tariq M, Dawar S, Mehdi FS (2008) Studies on the rhizosphere mycoflora of mangroves. Turkish J Bot 32:97–101

    Google Scholar 

  • Taylor TN, Krings M, Taylor EL (2015) 10 fungal diversity in the fossil record. In: McLaughlin D, Spatafora J (eds) Systematics and evolution. The Mycota (A comprehensive treatise on fungi as experimental systems for basic and applied research). Springer, Berlin. https://doi.org/10.1007/978-3-662-46011-5_10

    Google Scholar 

  • Tedersoo L, Bahram M, Polme S, Kõljalg U, Yorou NS, Wijesundera R et al (2014) Fungal biogeography. Global diversity and geography of soil fungi. Science. https://doi.org/10.1126/science.1256688

  • Terabayashi Y, Sano M, Yamane N, Marui J, Tamano K, Sagara J, Dohmoto M, Oda K, Oshima E, Tachibana K, Higa Y, Ohashi S, Koike H, Machida M (2010) Identification and characterization of genes responsible for biosynthesis of kojic acid, an industrially important compound from Aspergillus oryzae. Fungal Genet Biol 47:953–961

    Google Scholar 

  • Thirunavukkarasu N, Suryanarayanan TS, Girivasan KP, Venkatachalam A, Geetha V, Ravishankar JP, Doble M (2012) Fungal symbionts of marine sponges from Rameswaram, southern India: species composition and bioactive metabolites. Fungal Divers 55:37–46

    Google Scholar 

  • Thomas GM, Poinar GO Jr (1988) A fossil Aspergillus from Eocene Dominican amber. J Paleontol 62:141–143

    Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    Google Scholar 

  • Tiwari KL, Jadhav SK, Kumar A (2011) Morphological and molecular study of different penicillium species. Middle-East J Sci Res 7(2):203–210

    Google Scholar 

  • Tobert JA (2003) Lovastatin and beyond: the history of the HMG-CoA reductase inhibitors. Nat Rev Drug Discov 2:517–526

    Google Scholar 

  • Tolba M, Al-Doory Y, Al-Wahab M (1957) On the fungal flora of Iraqi soils. I Baghdad area. Proceeding of the third Arab Science Congress, Beirut, Abstract Book 198–214

    Google Scholar 

  • Tomita T (2003) Amylin in pancreatic islets and pancreatic endocrine neoplasms. Pathol Int 53:591–595

    Google Scholar 

  • Tremacoldi CR, Watanabe NK, Carmona EC (2004) Production of extracellular acid proteases by Aspergillus clavatus. World J Microbiol Biotechnol 20:639–642

    Google Scholar 

  • Tresner HD, Hayes JA (1971) Sodium chloride tolerance of terrestrial fungi. Appl Microbiol 22:210–213

    Google Scholar 

  • Tripathi M, Gupta RC, Joshi Y (2014a) Spegazzinia tessarthra isolated as a true endophyte from lichen Heterodermia flabellata. Ind Phytopathol 67:109–110

    Google Scholar 

  • Tripathi M, Gupta RC, Joshi Y (2014b) Physcia dilatata Nyl. (lichenized fungi, Physciaceae); a new host of Bipolaris australiensis (M.B. Ellis) Tsuda and Ueyama from Kumaun Himalaya, India. Proc Nat Acad Sci Lett 37:477–479

    Google Scholar 

  • Tripathi M, Joshi Y (2015) Endolichenic Fungi in Kumaun Himalaya: a case study. In: Upreti D, Divakar P, Shukla V, Bajpai R (eds) Recent advances in lichenology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2235-4_6

    Google Scholar 

  • Tripathi M, Joshi Y, Gupta RC (2014c) Assessment of endolichenic fungal diversity in some forests of Kumaun Himalaya. Curr Sci 107:745–748

    Google Scholar 

  • Trüper HG, Galinski EA (1986) Concentrated brines as habitats for microorganisms. Experientia 42:1182–1187

    Google Scholar 

  • Turnerr W, Aldridge D (1983) Fungal Metabolites II. Academic Press Inc, London, pp 3–43

    Google Scholar 

  • Underhill DM, Iliev ID (2014) The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol 14:405–416

    Google Scholar 

  • Urairuj C, Khanongnuch C, Lumyong S (2003) Ligninolytic enzymes from tropical endophytic. Xylariaceae Fungal Divers 13:209–219

    Google Scholar 

  • Vaishnav P, Demain AL (2010) Unexpected applications of secondary metabolites. Biotech Adv 29:223–229

    Google Scholar 

  • van der Straat L, Vernooij M, Lammers M, van den Berg W, Schonewille T, Cordewener J, van der Meer I, Koops A, de Graaff LH (2014) Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger. Microb Cell Factories 13:11

    Google Scholar 

  • van Woerden HC, Gregory C, Brown R, Marchesi JR, Hoogendoorn B, Matthews IP (2013) Differences in fungi present in induced sputum samples from asthma patients and non-atopic controls: a community based case control study. BMC Infect Dis 13:69

    Google Scholar 

  • Vandenberghe LPS, Soccol CR, Pandey A, Lebeault JM (1999) Review: microbial production of citric acid. Braz Arch Biol Technol 42:1–14

    Google Scholar 

  • Varga J, Due M, Frisvad JC, Samson RA (2007b) Taxonomic revision of Aspergillus section Clavati based on molecular, morphological and physiological data. Stud Mycol 59:89–106

    Google Scholar 

  • Varga J, Frisvad JC, Samson RA (2009) A reappraisal of fungi producing aflatoxin. World Mycotoxin J 2:263–277

    Google Scholar 

  • Varga J, Kevei E, Rinyu E, Teren J, Kozakiewicz Z (1996) Ochratoxin production by Aspergillus species. Appl Environ Microbiol 62:4461–4464

    Google Scholar 

  • Varga J, Tóth B, Kocsubé S, Farkas B, Szakács G, Téren J, Kozakiewicz Z (2005) Evolutionary relationships among Aspergillus terreus isolates and their relatives. Antonie Van Leeuwenhoek 88:141–150

    Google Scholar 

  • Varoglu M, Crews P (2000) Biosynthetically diverse compounds from a saltwater culture of sponge-derived Aspergillus niger. J Nat Prod 63:41–43

    Google Scholar 

  • Vega FE, Posada F, Aime MC, Pava-Ripoll M, Infante F, Rehner SA (2008) Entomopathogenic fungal endophytes. Biol Control 46:72–82

    Google Scholar 

  • Vera C, Guerrero C, Conejeros R, Illanes A (2012) Synthesis of galacto oligosaccharides by β-galactosidase from Aspergillus oryzae using partially dissolved and supersaturated solution of lactose. Enzym Microb Technol 50:188–194

    Google Scholar 

  • Verma A, Johri BN, Prakash A (2014) Antagonistic evaluation of bioactive metabolite from endophytic fungus, Aspergillus flavipes KF671231. J Mycol. https://doi.org/10.1155/2014/371218

  • Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5:33–40

    Google Scholar 

  • Vesonder RF, Lambert R, Wicklow DT, Biehl ML (1988) Eurotium spp. and echinulin in feed refused by swine. Appl Environ Microbiol 54:830–831

    Google Scholar 

  • Visagie CM, Hirooka Y, Tanney JB Whitefield E, Mwange K, Meijer M, Amend AS, Seifert KA, Samso RA (2014) Aspergillus, Penicillium and Talaromyces isolated from in house dust samples collected around the world. Stud Mycol 78:63–139

    Google Scholar 

  • Volz PA, Ellanskaya IA, Wasser SP, Nevo E, Grishkan I (2001) Soil microfungi of Israel. Biodiversity of Cyanoprocaryotes, algae and fungi of Israel. In: Subramanian CV, Wasser SP (eds) Fifty-two photographic plates. A.R.A. Gantner Verlag K.-G, Ruggell, p 546

    Google Scholar 

  • Wakisaka Y, Segawa T, Imamur K, Sakiyama T, Nakanishi K (1998) Development of a cylindrical apparatus for membrane-surface liquid culture and production of kojic acid using Aspergillus oryzae NRRL484. J Ferment Bioeng 85:488–494

    Google Scholar 

  • Wardhani DH, Vázquez JA, Pandiella SS (2010) Optimisation of antioxidants extraction from soybeans fermented by Aspergillus oryzae. Food Chem 118:731–739

    Google Scholar 

  • Watanabe T (2002) Pictorial atlas of soil and Seed fungi, morphologies of cultured fungi and key to species, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Wicklow DT, Cole RJ (1982) Tremorgenic indole metabolites and Aflatoxins in sclerotia of Aspergillus flavus: an evolutionary perspective. Can J Bot 60:525–528

    Google Scholar 

  • Wiese J, Ohlendorf B, Blumel M, Schmaljohann R, Imhoff JF (2011) Phylogenetic identification of fungi isolated from the marine sponge Tethya aurantium and identification of their secondary metabolites. Mar Drugs 9:561–585

    Google Scholar 

  • Wildman HG (2003) The rise and fall of natural products screening for drug discovery. Fungal Divers 13:221–231

    Google Scholar 

  • Williams DW, Lewis MAO (2000) Isolation and identification of Candida from the oral cavity. Oral Diseases 6(1):3–11

    Google Scholar 

  • Wu ZH, Liu D, Xu Y, Chen JL, Lin WH (2018) Antioxidant xanthones and anthraquinones isolated from a marine-derived fungus Aspergillus versicolor. Chin J Nat Med 16:219–224

    Google Scholar 

  • Xu H-W, Xu C, Fan ZQ, Zhao LJ, Liu HM (2013) A facile synthesis, antibacterial activity of pulvinone and its derivatives. Bioorg Med Chem Lett 23:737–739

    Google Scholar 

  • Yadav AN (2018) Biodiversity and biotechnological applications of host-specific Endophytic fungi for sustainable agriculture and allied sectors. Acta Sci Microbiol 1:01–05

    Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2017a) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:1–13

    Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307

    Google Scholar 

  • Yadav AN, Verma P, Kumar R, Kumar V, Kumar K (2017b) Current applications and future prospects of eco-friendly microbes. EU Voice 3:1–3

    Google Scholar 

  • Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018) Biodiversity of the Genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-444-63501-3.00001-6

    Google Scholar 

  • Yen GC, Chang YC, Su W (2003) Antioxidant activity and active compounds of rice koji fermented with Aspergillus candidus. Food Chem 83:49–54

    Google Scholar 

  • Youssef YA (1974) On the fungal flora of Libyan soils. Arch Microbiol 99:167–171

    Google Scholar 

  • Yu X, Li Y, Wang C, Wu D (2004) Immobilization of Aspergillus niger tannase by microencapsulation and its kinetic characteristics. Biotechnol Appl Biochem 40:151–155

    Google Scholar 

  • Yu Z, Zhang B, Sun W, Zhang F, Li Z (2012) Phylogenetically diverse endozoic fungi in the South China Sea sponges and their potential in synthesizing bioactive natural products suggested by PKS gene and cytotoxic activity analysis. Fungal Divers. Available from: http://dx.doi.org/10.1007/s13225-012-0192-7.

  • Zhang A, Roehr M (2002) Citric acid fermentation and heavy metal ions – II. The action of elevated manganese ion concentrations. Acta Biotechnol 22:375–382

    Google Scholar 

  • Zhang XY, Bao J, Wang GH, He F, Xu XY, Qi SH (2012) Diversity and antimicrobial activity of culturable fungi isolated from six species of the South China Sea gorgonians. Microb Ecol 64(3):617–627

    Google Scholar 

  • Zhang XY, Tang GL, Xu XY, Nong XH, Qi SH (2014) Insights into deep-sea sediment fungal communities from the East Indian Ocean using targeted environmental sequencing combined with traditional cultivation. PLoS One 9:e109118

    Google Scholar 

  • Zhang Y, Han T, Ming Q, Wu L, Rahman K, Qin L (2012a) Alkaloids produced by endophytic fungi: a review. Nat Prod Commun 7:963–968

    Google Scholar 

  • Zhang Y, Li XM, Proksch P (2007a) Ergosterimide, a new natural Diels–Alder adduct of a steroid and maleimide in the fungus Aspergillus niger. Steroids 72:723–727

    Google Scholar 

  • Zhang Y, Li XM, Wang BG (2012b) Anthraquinone derivatives produced by marine-derived fungus Aspergillus versicolor EN-7. Biosci Biotechnol Biochem 76:1774–1776

    Google Scholar 

  • Zhang Y, Li XM, Wang CY, Wang BG (2007b) A new naphthoquinoneimine derivative from the marine algal-derived endophytic fungus Aspergillus niger EN-13. Chin Chem Lett 18:951–953

    Google Scholar 

  • Zhang Y, Wang S, Li XM, Cui CM, Feng C, Wang BG (2007c) New sphingolipids with a previously unreported 9-methyl-C20- sphingosine moiety from a marine algous endophytic fungus Aspergillus niger EN-13. Lipids 42:759–764

    Google Scholar 

  • Zhao K, Ping W, Li Q, Hao S, Zhao L, Gao TD (2009) Aspergillus niger var. taxi, a new species variant of taxol producing fungus isolated from Taxus cuspidata in China. J Appl Microbiol 107:1202–1207

    Google Scholar 

  • Zhou K, Zhang X, Zhang F, Li Z (2011) Phylogenetically diverse cultivable fungal community and polyketide synthase (PKS), non-ribosomal peptide synthase (NRPS) genes associated with the South China Sea sponges. Microb Ecol 62:644–654

    Google Scholar 

  • Zidan Y, Handoussa T, Hosni H, El Hadidi NMN (2006) The conservation of a wooden Graeco- Roman coffin box, e-Preservation. Science 3:27–33

    Google Scholar 

  • Zohri AA, Elkhateeb WA, Mazen MB, Hashem M, Daba GM (2014) Study of soil mycobiota diversity in some new reclaimed areas, Egypt. Egyptian Pharmaceutical Journal 2014:58–63

    Google Scholar 

  • Zuccaro A, Summerbell RC, Gams W, Schroers HJ, Mitchell JI (2004) A new Acremonium species associated with Fucus spp., and its affinity with a phylogenetically distinct marine Emericellopsis clade. Stud Mycol 50:283–297

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdel-Azeem, A.M., Abdel-Azeem, M.A., Abdul-Hadi, S.Y., Darwish, A.G. (2019). Aspergillus: Biodiversity, Ecological Significances, and Industrial Applications. In: Yadav, A., Mishra, S., Singh, S., Gupta, A. (eds) Recent Advancement in White Biotechnology Through Fungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-10480-1_4

Download citation

Publish with us

Policies and ethics