Skip to main content

Trichoderma: Biodiversity, Ecological Significances, and Industrial Applications

  • Chapter
  • First Online:
Recent Advancement in White Biotechnology Through Fungi

Abstract

The genus Trichoderma is ubiquitous in the environment, particularly in soils. Trichoderma species could be readily isolated from soil by all available conventional methods, largely because they grow rapidly and also because of their abundant conidiation. Based on the phylogenetic study, several researchers reported that Trichoderma and Hypocrea form a single holomorph genus, within which two major clades can be distinguished. The species of Trichoderma possess diverse biotechnological applications such as they act as biofungicide for controlling various plant diseases, as biofertilizers for plant growth promotion. Trichoderma secrete diverse volatile compounds including alcohols, aldehydes and ketones, ethylene, hydrogen cyanide, and monoterpenes, as well as nonvolatile compounds including peptaibols and diketopiperazine-like gliotoxin and gliovirin which are known to exhibit antibiotic activity. The interaction of Trichoderma with the host plant results in parasitism/predation; production of antibiotic is combined with mycoparasitism (penetration and infection), production of cell wall-degrading enzymes or lytic enzymes, competition for nutrients or for space, and establishment of induced resistance in the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abo-Elyousr KA, Abdel-Hafez SI, Abdel-Rahim IR (2014) Isolation of Trichoderma and evaluation of their antagonistic potential against Alternaria porri. J Phytopath 162:567–574

    Google Scholar 

  • Adnan LA, Sathishkumar P, Yusoff ARM, Hadibarata T, Ameen F (2017) Rapid bioremediation of Alizarin Red S and Quinizarine Green SS dyes using Trichoderma lixii F21 mediated by biosorption and enzymatic processes. Bioprocess Biosyst Eng 40:85–97

    Google Scholar 

  • Ahamed A, Vermette P (2008) Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions. Biochem Eng J 40:399–407

    Google Scholar 

  • Ahmad JS, Baker R (1987) Rhizosphere competence of Trichoderma harzianum. Phytopathology 77:182–189

    Google Scholar 

  • Ahmed S, Bashir A, Saleem H, Saadia M, Jamil A (2009) Production and purification of cellulose-degrading enzymes from a filamentous fungus Trichoderma harzianum. Pak J Bot 41:1411–1419

    Google Scholar 

  • Almassi F, Ghisalberti EL, Narbey MJ, Sivasithamparam K (1991) New antibiotics from strains of Trichoderma harzianum. J Nat Prod 54:396–402

    Google Scholar 

  • Alvindia DG, Natsuaki KT (2008) Evaluation of fungal epiphytes isolated from banana fruit surfaces for biocontrol of banana crown rot disease. Crop Prot 27:1200–1207

    Google Scholar 

  • Andrade R, Ayer WA, Mebe PP (1992) The metabolites of Trichoderma longibrachiatum. Part 1. Isolation of the metabolites and the structure of trichodimerol. Can J Chem 70:2526–2535

    Google Scholar 

  • Anis M, Zaki MJ, Dawar S (2012) Development of a Na-alginate-based bioformulation and its use in the management of charcoal rot of sunflower (Helianthus annuus L.). Pak J Bot 44:1167–1170

    Google Scholar 

  • Arnold AE, Herre EA (2003) Canopy cover and leaf age affect colonization by tropical fungal endophytes: ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia 95:388–398

    Google Scholar 

  • Arnold EA, Mej´ıa LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100:15649–15654

    Google Scholar 

  • Arvas M, Pakula T, Smit B, Rautio J, Koivistoinen H, Jouhten P, Lindfors E, Wiebe M, Penttilä M, Saloheimo M (2011) Correlation of gene expression and protein production rate-a system wide study. BMC genomics 12:616

    Google Scholar 

  • Asmawati L, Widiastuti A, Sumardiyono C (2017) Induction of reactive oxygen species by Trichoderma spp. against downy mildew in maize. In: Proceeding of the 1st international conference on tropical agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-60363-6_13

    Google Scholar 

  • Audenaert K, Pattery T, Cornelis P, Höfte M (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol Plant-Microbe Interact 15:1147–1156

    Google Scholar 

  • Awad NE, Kassem HA, Hamed MA, El-Feky AM, Elnaggar MA, Mahmoud K, Ali MA (2018) Isolation and characterization of the bioactive metabolites from the soil derived fungus Trichoderma viride. Mycology 9:70–80

    Google Scholar 

  • Aziz N, El-Fouly M, El-Essawy A, Khalaf M (1997) Influence of bean seedling root exudates on the rhizosphere colonization by Trichoderma lignorum for the control of Rhizoctonia solani. Bot Bull Acad Sin 38:33–39

    Google Scholar 

  • Bai Z, Jin B, Li Y, Chen J, Li Z (2008) Utilization of winery wastes for Trichoderma viride biocontrol agent production by solid state fermentation. J Environ Sci 20:353–358

    Google Scholar 

  • Baig M, Mane V, More D, Shinde L, Baig M (2003) Utilization of banana agricultural waste: production of cellulases by soil fungi. J Environ Biol 24:173–176

    Google Scholar 

  • Benítez T, Rincón AM, Limón MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    Google Scholar 

  • Bissett J, Gams W, Jaklitsch W, Samuels GJ (2015) Accepted Trichoderma names in the year 2015. IMA fungus 6:263–295

    Google Scholar 

  • Brückner H, Graf H, Bokel M (1984) Paracelsin; characterization by NMR spectroscopy and circular dichroism, and hemolytic properties of a peptaibol antibiotic from the cellulolytically active mold Trichoderma reesei. Part B. Experientia 40:1189–1197

    Google Scholar 

  • Buès R, Bussières P, Dadomo M, Dumas Y, Garcia-Pomar M, Lyannaz J-P (2004) Assessing the environmental impacts of pesticides used on processing tomato crops. Agric, Ecosyst Environ 102:155–162

    Google Scholar 

  • Cardoza RE, Hermosa MR, Vizcaíno JA, González F, Llobell A, Monte E, Gutiérrez S (2007) Partial silencing of a hydroxy-methylglutaryl-CoA reductase-encoding gene in Trichoderma harzianum CECT 2413 results in a lower level of resistance to lovastatin and lower antifungal activity. Fungal Genet Biol 44:269–283

    Google Scholar 

  • Carsolio C, Benhamou N, Haran S, Cortés C, Gutiérrez A, Chet I, Herrera-Estrella A (1999) Role of the Trichoderma harzianum Endochitinase Gene, ech42, in Mycoparasitism. Appl Environ Microbiol 65:929–935

    Google Scholar 

  • Cheng P, Liu B, Su Y, Hu Y, Hong Y, Yi X, Chen L, Su S, Chu JS, Chen N (2017) Genomics insights into different cellobiose hydrolysis activities in two Trichoderma hamatum strains. Microb Cell Fact 16:63

    Google Scholar 

  • Cheng P, Song W, Gong X, Liu Y, Xie W, Huang L, Hong Y (2015) Proteomic approaches of Trichoderma hamatum to control Ralstonia solanacearum causing pepper bacterial wilt. Int J Agric Biol 17:1101–1109

    Google Scholar 

  • Chet I (1987) Trichoderma-Application, mode of action, and potential as a biocontrol agent of soilborne pathogenic fungi. In: Chet I (ed) Innovative approaches to plant disease control. Wiley, New York, pp 137–160

    Google Scholar 

  • Chet I, Inbar J, Hadar I (1997) Fungal antagonists and mycoparasites. In: Wicklow DT, Söderström B (eds) The Mycota IV: environmental and microbial relationships. Springer, Berlin, pp 165–184

    Google Scholar 

  • Contreras-Cornejo HA, López-Bucio JS, Méndez-Bravo A, Macías-Rodríguez L, Ramos-Vega M, Guevara-García ÁA, López-Bucio J (2015) Mitogen-activated protein kinase 6 and ethylene and auxin signaling pathways are involved in Arabidopsis root-system architecture alterations by Trichoderma atroviride. Mol Plant-Microbe Interact 28:701–710

    Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Beltrán-Peña E, Herrera-Estrella A, López-Bucio J (2011) Trichoderma-induced plant immunity likely involves both hormonal-and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea. Plant Signal Behav 6:1554–1563

    Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592

    Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Herrera-Estrella A, López-Bucio J (2014) The 4-phosphopantetheinyl transferase of Trichoderma virens plays a role in plant protection against Botrytis cinerea through volatile organic compound emission. Plant Soil 379:261–274

    Google Scholar 

  • Coque J-JR, Álvarez-Rodríguez ML, Larriba G (2003) Characterization of an inducible chlorophenol O-methyltransferase from Trichoderma longibrachiatum involved in the formation of chloroanisoles and determination of its role in cork taint of wines. Appl Environ Microbiol 69:5089–5095

    Google Scholar 

  • Crutcher FK, Parich A, Schuhmacher R, Mukherjee PK, Zeilinger S, Kenerley CM (2013) A putative terpene cyclase, vir4, is responsible for the biosynthesis of volatile terpene compounds in the biocontrol fungus Trichoderma virens. Fungal Genet Biol 56:67–77

    Google Scholar 

  • Cumagun C, Hockenhull J, Lübeck M (2000) Characterization of Trichoderma isolates from philippine rice fields by UP-PCR and rDNA-ITS1 analysis: identification of UP-PCR markers. J Phytopath 148:109–115

    Google Scholar 

  • Cutler HG, Himmelsbach DS, Arrendale RF, Cole PD, Cox RH (1989) Koninginin A: a novel plant growth regulator from Trichoderma koningii. Agric Biol Chem 53:2605–2611

    Google Scholar 

  • Daguerre Y, Siegel K, Edel-Hermann V, Steinberg C (2014) Fungal proteins and genes associated with biocontrol mechanisms of soil-borne pathogens: a review. Fungal Biol Rev 28:97–125

    Google Scholar 

  • De La Cruz J, Rey M, Lora JM, Hidalgo-Gallego A, Domínguez F, Pintor-Toro JA, Llobell A, Benítez T (1993) Carbon source control on β-glucanases, chitobiase and chitinase from Trichoderma harzianum. Arch Microbiol 159:316–322

    Google Scholar 

  • De Meyer G, Höfte M (1997) Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87:588–593

    Google Scholar 

  • Degenkolb T, Von Doehren H, Fog Nielsen K, Samuels GJ, Brückner H (2008) Recent advances and future prospects in peptaibiotics, hydrophobin, and mycotoxin research, and their importance for chemotaxonomy of Trichoderma and Hypocrea. Chem Biodivers 5:671–680

    Google Scholar 

  • Demain AL, Fang A (2000) The natural functions of secondary metabolites. In: Fiechter IA (ed) History of modern biotechnology. Springer, Berlin/New York/Heidelberg. https://doi.org/10.1007/3-540-44964-7_1

    Google Scholar 

  • Dennis C, Webster J (1971) Antagonistic properties of species-groups of Trichoderma: II. Production of volatile antibiotics. Trans Br Mycol Soc 57:41–48

    Google Scholar 

  • Di Marco S, Osti F, Cesari A (2004) Experiments on the control of esca by Trichoderma. Phytopathol Mediterr 43:108–115

    Google Scholar 

  • Dickinson JM, Hanson JR, Hitchcock PB, Claydon N (1989) Structure and biosynthesis of harzianopyridone, an antifungal metabolite of Trichoderma harzianum. J Chem Soc Perkin Trans 1:1885–1887

    Google Scholar 

  • Djonović S, Vargas WA, Kolomiets MV, Horndeski M, Wiest A, Kenerley CM (2007) A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol 145:875–889

    Google Scholar 

  • du Plessis IL, Druzhinina IS, Atanasova L, Yarden O, Jacobs K (2018) The diversity of Trichoderma species from soil in South Africa with five new additions. Mycologia 110:559–583

    Google Scholar 

  • Dubos B, Ricard JL (1974) Curative treatment of peach trees against silver leaf disease (Stereum purpureum) with Trichoderma viride preparations. Plant Dis Rep 58:147–150

    Google Scholar 

  • Duffy BK, Ownley BH, Weller DM (1997) Soil chemical and physical properties associated with suppression of take-all of wheat by Trichoderma koningii. Phytopathology 87:1118–1124

    Google Scholar 

  • Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9

    Google Scholar 

  • Elad Y (1994) Biological control of grape grey mould by Trichoderma harzianum. Crop Prot 13:35–38

    Google Scholar 

  • Elad Y, Baker R (1985) Influence of trace amounts of cations and siderophore-producing pseudomonads on chlamydospore germination of Fusarium oxysporum. Phytopathology 75:1047–1052

    Google Scholar 

  • Elad Y, Chet I, Henis Y (1982) Degradation of plant pathogenic fungi by Trichoderma harzianum. Can J Microbiol 28:719–725

    Google Scholar 

  • Endo A, Hasumi K, Yamada A, Shimoda R, Takeshima H (1986) The synthesis of compactin (ML-236B) and monacolin K in fungi. J Antibiot 39:1609–1610

    Google Scholar 

  • Esposito E, Silva MD (1998) Systematics and environmental application of the genus Trichoderma. Crit Rev Microbiol 24:89–98

    Google Scholar 

  • Evans HC, Holmes KA, Thomas SE (2003) Endophytes and mycoparasites associated with an indigenous forest tree, Theobroma gileri, in Ecuador and a preliminary assessment of their potential as biocontrol agents of cocoa diseases. Mycol Prog 2:149–160

    Google Scholar 

  • Evidente A, Cabras A, Maddau L, Serra S, Andolfi A, Motta A (2003) Viridepyronone, a new antifungal 6-substituted 2 h-pyran-2-one produced by Trichoderma viride. J Agric Food Chem 51:6957–6960

    Google Scholar 

  • Gajera H, Katakpara ZA, Patel S, Golakiya B (2016) Antioxidant defense response induced by Trichoderma viride against Aspergillus niger Van Tieghem causing collar rot in groundnut (Arachis hypogaea L.). Microb Pathog 91:26–34

    Google Scholar 

  • Galante Y, De Conti A, Monteverdi R (2014) Application of Trichoderma enzymes in the textile industry. Trichoderma & Gliocladium 2:311-325

    Google Scholar 

  • Ganga A, González-Candelas L, Ramón D, Pérez-González JA (1997) Glucose-tolerant expression of Trichoderma longibrachiatum endoglucanase I, an enzyme suitable for use in wine production. J Agric Food Chem 45:2359–2362

    Google Scholar 

  • Garnica-Vergara A, Barrera-Ortiz S, Muñoz-Parra E, Raya-González J, Méndez-Bravo A, Macías-Rodríguez L, Ruiz-Herrera LF, López-Bucio J (2016) The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. New Phytol 209:1496–1512

    Google Scholar 

  • Gerhardson B (2002) Biological substitutes for pesticides. Trends Biotechnol 20:338–343

    Google Scholar 

  • Ghisalberti E, Narbey M, Dewan M, Sivasithamparam K (1990) Variability among strains of Trichoderma harzianum in their ability to reduce take-all and to produce pyrones. Plant Soil 121:287–291

    Google Scholar 

  • Ghisalberti E, Sivasithamparam K (1991) Antifungal antibiotics produced by Trichoderma spp. Soil Biol Biochem 23:1011–1020

    Google Scholar 

  • Ghisalberti EL, Rowland CY (1993) Antifungal metabolites from Trichoderma harzianum. J Nat Prod 56:1799–1804

    Google Scholar 

  • Häkkinen M, Arvas M, Oja M, Aro N, Penttilä M, Saloheimo M, Pakula TM (2012) Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates. Microb Cell Fact 11:134

    Google Scholar 

  • Hanada RE, de Jorge Souza T, Pomella AW, Hebbar KP, Pereira JO, Ismaiel A, Samuels GJ (2008) Trichoderma martiale sp. nov., a new endophyte from sapwood of Theobroma cacao with a potential for biological control. Mycol Res 112:1335–1343

    Google Scholar 

  • Handelsman J, Stabb EV (1996) Biocontrol of soilborne plant pathogens. Plant Cell 8:1855

    Google Scholar 

  • Harman GE (2000) Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzinum T-22. Plant Dis 84:377–393

    Google Scholar 

  • Harman GE (2006) Overview of Mechanisms and Uses of Trichoderma spp. Phytopathology 96:190–194

    Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Google Scholar 

  • Hateet RR (2017) Isolation and Identification of Three Bioactive Compounds from Endophytic Fungus Trichoderma sp. J Al-Nahrain Uni Sci 20:108–113

    Google Scholar 

  • Henrissat B, Driguez H, Viet C, Schülein M (1985) Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Nature Biotechnol 3:722

    Google Scholar 

  • Hermosa M, Grondona I, Et I, Diaz-Minguez J, Castro C, Monte E, Garcia-Acha I (2000) Molecular characterization and identification of biocontrol isolates of Trichoderma spp. Appl Environ Microbiol 66:1890–1898

    Google Scholar 

  • Herpoël-Gimbert I, Margeot A, Dolla A, Jan G, Mollé D, Lignon S, Mathis H, Sigoillot J-C, Monot F, Asther M (2008) Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol Biofuels 1:18

    Google Scholar 

  • Heydari A, Pessarakli M (2010) A review on biological control of fungal plant pathogens using microbial antagonists. J Biol Sci 10:273–290

    Google Scholar 

  • Hjeljord L, Tronsmo A (2005) Trichoderma and Gliocladium in biological control: overview. In: Enzymes, biological control and commercial applications, CRC Press, pp 115–133

    Google Scholar 

  • Hoffmeister D, Keller NP (2007) Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep 24:393–416

    Google Scholar 

  • Holmes KA, Schroers H-J, Thomas SE, Evans HC, Samuels GJ (2004) Taxonomy and biocontrol potential of a new species of Trichoderma from the Amazon basin of South America. Mycol Prog 3:199–210

    Google Scholar 

  • Howell C (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    Google Scholar 

  • Howell C, Stipanovic R (1980) Suppression of Pythium ultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology 70:712–715

    Google Scholar 

  • Howell CR, Stipanovic RD (1994) Effect of sterol biosynthesis inhibitors on phytotoxin (viridiol) production by Gliocladium virens in culture. Phytopathology 84:969–972

    Google Scholar 

  • Howell C, Stipanovic R, Lumsden R (1993) Antibiotic production by strains of Gliocladium virens and its relation to the biocontrol of cotton seedling diseases. Biocontrol Sci Technol 3:435–441

    Google Scholar 

  • Howell CR, Stipanovic RD (1983) Gliovirin, a new antibiotic from Gliocladium virens, and its role in the biological control of Pythium ultimum. Can J Microbiol 29:321–324

    Google Scholar 

  • Hoyos-Carvajal L, Orduz S, Bissett J (2009) Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions. Fungal Genet Biol 46:615–631

    Google Scholar 

  • Inbar J, Chet I (1995) The role of recognition in the induction of specific chitinases during mycoparasitism by Trichoderma harzianum. Microbiology 141:2823–2829

    Google Scholar 

  • Ishii T, Nonaka K, Suga T, Masuma R, Ōmura S, Shiomi K (2013) Cytosporone S with antimicrobial activity, isolated from the fungus Trichoderma sp. FKI-6626. Bioorganic Med Chem Lett 23:679–681

    Google Scholar 

  • Islam MT, Hashidoko Y, Deora A, Ito T, Tahara S (2005) Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne Peronosporomycetes. Appl Environ Microbiol 71:3786–3796

    Google Scholar 

  • Jones EE, Rabeendran N, Stewart A (2014) Biocontrol of Sclerotinia sclerotiorum infection of cabbage by Coniothyrium minitans and Trichoderma spp. Biocontrol Sci Technol 24:1363–1382

    Google Scholar 

  • Kale G, Rewale K, Sahane S, Magar S (2018) Isolation of Trichoderma spp. from the rhizospheric soils of tomato crop grown in Marathwada region. J Pharmacogn Phytochem 7:3360–3362

    Google Scholar 

  • Kandula D, Jones E, Stewart A, McLean K, Hampton J (2015) Trichoderma species for biocontrol of soil-borne plant pathogens of pasture species. Biocontrol Sci Technol 25:1052–1069

    Google Scholar 

  • Kashyap PL, Rai P, Srivastava AK, Kumar S (2017) Trichoderma for climate resilient agriculture. World J Microbiol Biotechnol 33:155

    Google Scholar 

  • Kawada M, Yoshimoto Y, Kumagai H, Someno T, Momose I, Kawamura N, Isshiki K, Ikeda D (2004) PP2A inhibitors, harzianic acid and related compounds produced by fungus strain F-1531. J Antibiot 57:235–237

    Google Scholar 

  • Keel C, Voisard C, Berling C-H, Kahr G, Defago G (1989) Iron sufficiency, a prerequisite for the suppression of tobacco black root rot by Pseudomonas fluorescens strain CHA 0 under gnotobiotic conditions. Phytopathology 79:584–589

    Google Scholar 

  • Khalili E, Javed MA, Huyop F, Rayatpanah S, Jamshidi S, Wahab RA (2016) Evaluation of Trichoderma isolates as potential biological control agent against soybean charcoal rot disease caused by Macrophomina phaseolina. Biotechnol Biotec Eq 30:479–488

    Google Scholar 

  • Khamthong N, Rukachaisirikul V, Tadpetch K, Kaewpet M, Phongpaichit S, Preedanon S, Sakayaroj J (2012) Tetrahydroanthraquinone and xanthone derivatives from the marine-derived fungus Trichoderma aureoviride PSU-F95. Arch Pharmacal Res 35:461–468

    Google Scholar 

  • Kidwai MK, Nehra M (2017) Biotechnological applications of Trichoderma species for environmental and food security. In: Plant biotechnology: recent advancements and developments. Springer, Singapore, pp 125–156

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr Microbiol 4:317–320

    Google Scholar 

  • Kontani M, Sakagami Y, Marumo S (1994) First β-1, 6-glucan biosynthesis inhibitor, bisvertinolone isolated from fungus, Acremonium strictum and its absolute stereochemistry. Tetrahedron Lett 35:2577–2580

    Google Scholar 

  • Kotze C, Van Niekerk J, Halleen F, Mostert L, Fourie P (2011) Evaluation of biocontrol agents for grapevine pruning wound protection against trunk pathogen infection. Phytopathol Mediterr 50:247–263

    Google Scholar 

  • Kour D, Rana KL, Kumar R, Yadav N, Rastegari AA, Yadav AN, Singh K (2019) Gene Manipulation and Regulation of Catabolic Genes for Biodegradation of Biphenyl Compounds. In: Singh HB, Gupta VK, Jogaiah S (eds) New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier, Amsterdam, pp 1-23. https://doi.org/10.1016/B978-0-444-63503-7.00001-2

    Google Scholar 

  • Kowalska B, Smolińska U, Szczech M, Winciorek J (2017) Application of organic waste material overgrown with Trichoderma atroviride as a control strategy for Sclerotinia sclerotiorum and Chalara thielavioides in soil. J Plant Prot Res 57:205–211

    Google Scholar 

  • Kredics L, Láday M, Körmöczi P, Manczinger L, Rákhely G, Vágvölgyi C, Szekeres A (2011) Trichoderma communities of the winter wheat rhizosphere. Agrár-és Vidékfejlesztési Szemle 6:413–418

    Google Scholar 

  • Kubicek CP (2013) Systems biological approaches towards understanding cellulase production by Trichoderma reesei. J Biotechnol 163:133–142

    Google Scholar 

  • Kubicek CP, Bissett J, Druzhinina I, Kullnig-Gradinger C, Szakacs G (2003) Genetic and metabolic diversity of Trichoderma: a case study on South-East Asian isolates. Fungal Genet Biol 38:310–319

    Google Scholar 

  • Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK (2011a) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:1

    Google Scholar 

  • Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK (2011b) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:R40

    Google Scholar 

  • Kumar A, Scher K, Mukherjee M, Pardovitz-Kedmi E, Sible GV, Singh US, Kale SP, Mukherjee PK, Horwitz BA (2010) Overlapping and distinct functions of two Trichoderma virens MAP kinases in cell-wall integrity, antagonistic properties and repression of conidiation. Biochem Biophys Res Commun 398:765–770

    Google Scholar 

  • Kumar S (2013) Trichoderma: a biological weapon for managing plant diseases and promoting sustainability. Int J Agric Sci Vet Med 1:106–121

    Google Scholar 

  • Leeman M, Van Pelt J, Den Ouden F, Heinsbroek M, Bakker P, Schippers B (1995) Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to fusarium wilt, using a novel bioassay. Eur J Plant Pathol 101:655–664

    Google Scholar 

  • Lin Y-R, Lo C-T, Liu S-Y, Peng K-C (2012) Involvement of pachybasin and emodin in self-regulation of Trichoderma harzianum mycoparasitic coiling. J Agric Food Chem 60:2123–2128

    Google Scholar 

  • Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642

    Google Scholar 

  • Liu P-G, Yang Q (2005) Identification of genes with a biocontrol function in Trichoderma harzianum mycelium using the expressed sequence tag approach. Res Microbiol 156:416–423

    Google Scholar 

  • Liu R, Gu Q-Q, Zhu W-M, Cui C-B, Fan G-T (2005) Trichodermamide A and aspergillazine A, two cytotoxic modified dipeptides from a marine-derived fungus Spicaria elegans. Arch Pharmacal Res 28:1042–1046

    Google Scholar 

  • Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant-Microbe Interact 4:5–13

    Google Scholar 

  • Lorito M, Farkas V, Rebuffat S, Bodo B, Kubicek CP (1996) Cell wall synthesis is a major target of mycoparasitic antagonism by Trichoderma harzianum. J Bacteriol 178:6382–6385

    Google Scholar 

  • Lorito M, Woo S (1998) Advances in understanding the antifungal mechanism (s) of Trichoderma and new applications for biological control. Iobc WPRS Bull 21:73–80

    Google Scholar 

  • Lorito M, Woo SL, Harman GE, Monte E (2010) Translational research on Trichoderma: from ‘omics to the field. Annu Rev Phytopathol 48:395–417

    Google Scholar 

  • Luckner M (1990) Secondary metabolism in microorganisms, plants and animals. 3rd edn. Springer, Berlin

    Google Scholar 

  • Macías FA, Varela RM, Simonet AM, Cutler HG, Cutler SJ, Eden MA, Hill RA (2000) Bioactive Carotanes from Trichoderma virens. J Nat Prod 63:1197–1200

    Google Scholar 

  • Malmierca MG, Cardoza RE, Alexander NJ, McCormick SP, Collado IG, Hermosa R, Monte E, Gutiérrez S (2013) Relevance of trichothecenes in fungal physiology: disruption of tri5 in Trichoderma arundinaceum. Fungal Genet Biol 53:22–33

    Google Scholar 

  • Marco JLD, Valadares-Inglis MC, Felix CR (2003) Production of hydrolytic enzymes by Trichoderma isolates with antagonistic activity against Crinipellis perniciosa, the causal agent of witches’ broom of cocoa. Braz J Microbiol 34:33–38

    Google Scholar 

  • Marfori EC, Si K, E-i F, Kobayashi A (2002) Trichosetin, a novel tetramic acid antibiotic produced in dual culture of Trichoderma harzianum and Catharanthus roseus callus. Zeitschrift für Naturforschung C 57:465–470

    Google Scholar 

  • Martinez D, Berka R, Henrissat B, Saloheimo M, Arvas M, Baker S, Chapman J, Chertkov O, Coutinho P, Cullen D (2008) Genome sequence analysis of the cellulolytic fungus Trichoderma reesei (syn. Hypocrea jecorina) reveals a surprisingly limited inventory of carbohydrate active enzymes. Nat Biotechnol 26:553–560

    Google Scholar 

  • Mazzucco CE, Warr G (1996) Trichodimerol (BMS-182123) inhibits lipopolysaccharide-induced eicosanoid secretion in THP-1 human monocytic cells. J Leukoc Biol 60:271–277

    Google Scholar 

  • Mendes R, Kruijt M, De Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Google Scholar 

  • Migheli Q, González-Candelas L, Dealessi L, Camponogara A, Ramón-Vidal D (1998) Transformants of Trichoderma longibrachiatum overexpressing the β-1, 4-endoglucanase gene egl1 show enhanced biocontrol of Pythium ultimum on cucumber. Phytopathology 88:673–677

    Google Scholar 

  • Mukherjee PK, Horwitz BA, Kenerley CM (2012) Secondary metabolism in Trichoderma–a genomic perspective. Microbiology 158:35–45

    Google Scholar 

  • Mulaw TB, Druzhinina IS, Kubicek CP, Atanasova L (2013) Novel endophytic Trichoderma spp. isolated from healthy Coffea arabica roots are capable of controlling coffee tracheomycosis. Diversity 5:750–766

    Google Scholar 

  • Müller A, Faubert P, Hagen M, zu Castell W, Polle A, Schnitzler J-P, Rosenkranz M (2013) Volatile profiles of fungi–chemotyping of species and ecological functions. Fungal Genet Biol 54:25–33

    Google Scholar 

  • Mutawila C, Vinale F, Halleen F, Lorito M, Mostert L (2016) Isolation, production and in vitro effects of the major secondary metabolite produced by Trichoderma species used for the control of grapevine trunk diseases. Plant Pathol 65:104–113

    Google Scholar 

  • Nawaz K, Shahid AA, Bengyella L, Subhani MN, Ali M, Anwar W, Iftikhar S, Ali SW (2018) Diversity of Trichoderma species in chili rhizosphere that promote vigor and antagonism against virulent Phytophthora capsici. Sci Hort 239:242–252

    Google Scholar 

  • Nevalainen H, Suominen P, Taimisto K (1994) On the safety of Trichoderma reesei. J Biotechnol 37:193–200

    Google Scholar 

  • Ojha S, Chatterjee N (2011) Mycoparasitism of Trichoderma spp. in biocontrol of fusarial wilt of tomato. Arch Phytopathol Plant Protect 44:771–782

    Google Scholar 

  • Omann MR, Lehner S, Rodríguez CE, Brunner K, Zeilinger S (2012) The seven-transmembrane receptor Gpr1 governs processes relevant for the antagonistic interaction of Trichoderma atroviride with its host. Microbiology 158:107–118

    Google Scholar 

  • Osbourn A (2010) Secondary metabolic gene clusters: evolutionary toolkits for chemical innovation. Trends Genet 26:449–457

    Google Scholar 

  • Oskiera M, Szczech M, Stępowska A, Smolińska U, Bartoszewski G (2017) Monitoring of Trichoderma species in agricultural soil in response to application of biopreparations. Biol Control 113:65–72

    Google Scholar 

  • Pal S, Singh H, Sarkar DR, Yadav RS, Rakshit A (2017) Toward an integrated resource management: harnessing Trichoderma for sustainable intensification in agriculture. In: Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 245–256

    Google Scholar 

  • Pang G, Cai F, Li R, Zhao Z, Li R, Gu X, Shen Q, Chen W (2017) Trichoderma-enriched organic fertilizer can mitigate microbiome degeneration of monocropped soil to maintain better plant growth. Plant Soil 416:181–192

    Google Scholar 

  • Park Y-H, Mishra RC, Yoon S, Kim H, Park C, Seo S-T, Bae H (2018) Endophytic Trichoderma citrinoviride isolated from mountain-cultivated ginseng (Panax ginseng) has great potential as a biocontrol agent against ginseng pathogens. J Ginseng Res. https://doi.org/10.1016/j.jgr.2018.03.002

  • Parker SR, Cutler HG, Jacyno JM, Hill RA (1997) Biological activity of 6-pentyl-2 H-pyran-2-one and its analogs. J Agric Food Chem 45:2774–2776

    Google Scholar 

  • Pascale A, Vinale F, Manganiello G, Nigro M, Lanzuise S, Ruocco M, Marra R, Lombardi N, Woo SL, Lorito M (2017) Trichoderma and its secondary metabolites improve yield and quality of grapes. Crop Prot 92:176–181

    Google Scholar 

  • Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30–thirty years of strain improvement. Microbiology 158:58–68

    Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Brock/Springer series in contemporary bioscience. Springer, New York, pp 179–197

    Google Scholar 

  • Photita W, Lumyong S, Lumyong P (2001) Endophytic fungi of wild banana (Musa acuminata) at doi Suthep Pui National Park, Thailand. Mycol Res 105:1508–1513

    Google Scholar 

  • Pocasangre L, Sikora R, Vilich V, Schuster R (2000) Survey of banana endophytic fungi from central America and screening for biological control of the burrowing nematode (Radopholus similis). Info Musa 9:3–5

    Google Scholar 

  • Punja ZK, Utkhede RS (2003) Using fungi and yeasts to manage vegetable crop diseases. Trends Biotechnol 21:400–407

    Google Scholar 

  • Qian-cutrone J, Huang S, Chang L-P, Pirnik DM, Klohr SE, Dalterio RA, Hugill R, Lowe S, Alam M, Kadow KF (1996) Harziphilone and fleephilone, two new HIV REV/RRE binding inhibitors produced by Trichoderma harzianum. J Antibiot 49:990–997

    Google Scholar 

  • Ragnaud J, Marceau C, Roche-Bezian M, Wone C (1984) Infection peritoneale a Trichoderma koningii sur dialyse peritoneale continue ambulatoire. Méd Mal Infect 14:402–405

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V, Singh BP, Dhaliwal HS, Saxena AK (2018) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in Endophytic Fungal Research. Springer, Switzerland. https://doi.org/10.1007/978-3-030-03589-1_6

    Google Scholar 

  • Rao M, Reddy PP, Nagesh M (1998) Evaluation of plant based formulations of Trichoderma harzianum for the management of Meloidogyne incognita on egg plant. Nematol Mediterr 26:59–62

    Google Scholar 

  • Reddy PP, Rao M, Nagesh M (1996) Management of citrus nematode, Tylenchulus semipenetrans, by integration of Trichoderma harzianum with oil cakes. Nematol Mediterr 24:265–267

    Google Scholar 

  • Reino JL, Guerrero RF, Hernández-Galán R, Collado IG (2008) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7:89–123

    Google Scholar 

  • Reithner B, Schuhmacher R, Stoppacher N, Pucher M, Brunner K, Zeilinger S (2007) Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk1 differentially affects mycoparasitism and plant protection. Fungal Genet Biol 44:1123–1133

    Google Scholar 

  • Robertson M (1970) Fungi in fluids—a hazard of intravenous therapy. J Med Microbiol 3:99–102

    Google Scholar 

  • Rocha-Ramírez V, Omero C, Chet I, Horwitz BA, Herrera-Estrella A (2002) Trichoderma atroviride G-protein α-subunit gene tga1 is involved in mycoparasitic coiling and conidiation. Eukaryot Cell 1:594–605

    Google Scholar 

  • Roldán A, Palacios V, Peñate X, Benítez T, Pérez L (2006) Use of Trichoderma enzymatic extracts on vinification of Palomino fino grapes in the sherry region. J Food Eng 75:375–382

    Google Scholar 

  • Ru Z, Di W (2012) Trichoderma spp. from rhizosphere soil and their antagonism against Fusarium sambucinum. African J Biotechnol 11:4180–4186

    Google Scholar 

  • Rubini MR, Silva-Ribeiro RT, Pomella AW, Maki CS, Araújo WL, Dos Santos DR, Azevedo JL (2005) Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and biological control of Crinipellis perniciosa, causal agent of Witches’ Broom disease. Int J Biol Sci 1:24–33

    Google Scholar 

  • Ruiz N, Roullier C, Petit K, Sallenave-Namont C, Grovel O, Pouchus YF (2013) Marine-derived Trichoderma: a source of new bioactive metabolites. In: Mukherjee PK, Horwitz BA, Singh US, Mala M, Schmoll M (eds) Trichoderma: biology and applications, CAB International, USA, pp 247–279

    Google Scholar 

  • Samuels G, Pardo-schultheiss R, Hebbar K, Lumsden R, Bastos C, Costa J, Bezerra J (2000) Trichoderma stromaticum sp. nov., a parasite of the cacao witches broom pathogen. Mycol Res 104:760–764

    Google Scholar 

  • Samuels GJ, Dodd SL, Lu B-S, Petrini O, Schroers H-J, Druzhinina IS (2006a) The Trichoderma koningii aggregate species. Stud Mycol 56:67–133

    Google Scholar 

  • Samuels GJ, Ismaiel A (2009) Trichoderma evansii and T. lieckfeldtiae: two new T. hamatum-like species. Mycologia 101:142–156

    Google Scholar 

  • Samuels GJ, Petrini O, Manguin S (1994) Morphological and macromolecular characterization of Hypocrea schweinitzii and its Trichoderma anamorph. Mycologia 86:421–435

    Google Scholar 

  • Samuels GJ, Suarez C, Solis K, Holmes KA, Thomas SE, Ismaiel A, Evans HC (2006b) Trichoderma theobromicola and T. paucisporum: two new species isolated from cacao in South America. Mycol Res 110:381–392

    Google Scholar 

  • Saxena AK, Yadav AN, Kaushik R, Tyagi SP, Shukla L (2015) Biotechnological applications of microbes isolated from cold environments in agriculture and allied sectors. In: International conference on “low temperature science and biotechnological advances”, Society of low temperature biology. https://doi.org/10.13140/RG.2.1.2853.5202

  • Saxena AK, Yadav AN, Rajawat M, Kaushik R, Kumar R, Kumar M, Prasanna R, Shukla L (2016) Microbial diversity of extreme regions: an unseen heritage and wealth. Indian J Plant Genet Resour 29:246–248

    Google Scholar 

  • Scarselletti R, Faull J (1994) In vitro activity of 6-pentyl-α-pyrone, a metabolite of Trichoderma harzianum, in the inhibition of Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici. Mycol Res 98:1207–1209

    Google Scholar 

  • Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87:787–799

    Google Scholar 

  • Seidl V, Song L, Lindquist E, Gruber S, Koptchinskiy A, Zeilinger S, Schmoll M, Martínez P, Sun J, Grigoriev I (2009) Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey. BMC genomics 10:567

    Google Scholar 

  • Sekhar YC, Ahammed SK, Prasad T, Devi RSJ (2017) Identification of Trichoderma species based on morphological characters isolated from rhizosphere of groundnut (Arachis hypogaea L). Int J Sci Environ Technol 6:2056–2063

    Google Scholar 

  • Shanahan P, O’Sullivan DJ, Simpson P, Glennon JD, O’Gara F (1992) Isolation of 2, 4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 58:353–358

    Google Scholar 

  • Shanmugaiah V, Balasubramanian N, Gomathinayagam S, Manoharan P, Rajendran A (2009) Effect of single application of Trichoderma viride and Pseudomonas fluorescens on growth promotion in cotton plants. Afr J Agr Res 4:1220–1225

    Google Scholar 

  • Sharma P (2011) Complexity of ‘Trichoderma-Fusarium’ interaction and manifestation of biological control. Aust J Crop Sci 5:1027

    Google Scholar 

  • Sharon E, Orion D, Spiegel Y (1993) Binding of soil microorganisms and red blood cells by the gelatinous matrix and eggs of Meloidogyne javanica and Rotylenchulus reniformis. Fundame Appl Nematolo 16:5–9

    Google Scholar 

  • Shentu X-P, Liu W-P, Zhan X-H, Yu X-P, Zhang C-X (2013) The elicitation effect of pathogenic fungi on trichodermin production by Trichoderma brevicompactum. Sci World J ​https://doi.org/10.1155/2013/607102.

    Google Scholar 

  • Shi W-L, Chen X-L, Wang L-X, Gong Z-T, Li S, Li C-L, Xie B-B, Zhang W, Shi M, Li C (2016) Cellular and molecular insight into the inhibition of primary root growth of Arabidopsis induced by peptaibols, a class of linear peptide antibiotics mainly produced by Trichoderma spp. J Exp Bot 67:2191–2205

    Google Scholar 

  • Sikora RA, Pocasangre L, zum Felde A, Niere B, Vu TT, Dababat A (2008) Mutualistic endophytic fungi and in-planta suppressiveness to plant parasitic nematodes. Biol Control 46:15–23

    Google Scholar 

  • Singh A, Shukla N, Kabadwal B, Tewari A, Kumar J (2018) Review on Plant-Trichoderma-Pathogen Interaction. Int J Curr Microbiol App Sci 7:2382–2397

    Google Scholar 

  • Singh RK (2010) ‘Trichoderma: a bio-control agent for management of soil borne diseases’. Retrived January, 14 2016 from http://agropedia.iitk.ac.in

  • Sivasithamparam K, Ghisalberti E (2014) Secondary metabolism in Trichoderma. Trichoderma and Gliocladium Volume 1: basic biology, taxonomy. Genetics 1:139

    Google Scholar 

  • Spiegel Y, Sharon E, Bar-Eyal M, Maghodia A, Vanachter A, Van Assche A, Van Kerckhove S, Viterbo A, Chet I (2007) Evaluation and mode of action of Trichoderma isolates as biocontrol agents against plant-parasitic nematodes. IOBC WPRS Bull 30:129

    Google Scholar 

  • Suman A, Verma P, Yadav AN, Saxena AK (2015) Bioprospecting for extracellular hydrolytic enzymes from culturable thermotolerant bacteria isolated from Manikaran thermal springs. Res J Biotechnol 10:33–42

    Google Scholar 

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, Research perspectives. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2647-5_7

    Google Scholar 

  • Tamura A, Kotani H, Naruto S (1975) Trichoviridin and dermadin from Trichoderma sp. TK-1. J Antibiot 28:161–162

    Google Scholar 

  • Tansengco M, Tejano J, Coronado F, Gacho C, Barcelo J (2018) Heavy metal tolerance and removal capacity of trichoderma species isolated from mine tailings in itogon, Benguet. Environ Nat Resour J 16:39–57

    Google Scholar 

  • Tisch D, Schmoll M (2013) Targets of light signalling in Trichoderma reesei. BMC Genom 14:657

    Google Scholar 

  • Tripathi P, Singh PC, Mishra A, Chauhan PS, Dwivedi S, Bais RT, Tripathi RD (2013) Trichoderma: a potential bioremediator for environmental clean up. Clean Technol Environ 15:541–550

    Google Scholar 

  • Velázquez-Robledo R, Contreras-Cornejo H, Macías-Rodríguez L, Hernández-Morales A, Aguirre J, Casas-Flores S, López-Bucio J, Herrera-Estrella A (2011) Role of the 4-phosphopantetheinyl transferase of Trichoderma virens in secondary metabolism and induction of plant defense responses. Mol Plant Microbe Interact 24:1459–1471

    Google Scholar 

  • Verma M, Brar SK, Tyagi R, Surampalli R, Valero J (2007a) Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochem Eng J 37:1–20

    Google Scholar 

  • Verma V, Gond S, Kumar A, Kharwar R, Strobel G (2007b) The endophytic mycoflora of bark, leaf, and stem tissues of Azadirachta indica A. Juss (Neem) from Varanasi (India). Microb Ecol 54:119–125

    Google Scholar 

  • Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2014) Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int J Curr Microbiol Appl Sci 3:432–447

    Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015a) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899

    Google Scholar 

  • Verma P, Yadav AN, Shukla L, Saxena AK, Suman A (2015b) Alleviation of cold stress in wheat seedlings by Bacillus amyloliquefaciens IARI-HHS2-30,an endophytic psychrotolerant K-solubilizing bacterium from NW Indian Himalayas. Natl J Life Sci 12:105–110

    Google Scholar 

  • Verma P, Yadav AN, Shukla L, Saxena AK, Suman A (2015c) Hydrolytic enzymes production by thermotolerant Bacillus altitudinis IARI-MB-9 and Gulbenkiania mobilis IARI-MB-18 isolated from Manikaran hot springs. Int J Adv Res 3:1241–1250

    Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016a) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58

    Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK, Suman A (2016b) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2016.01.042

  • Verma P, Yadav AN, Kumar V, Khan A, Saxena AK (2017a) Microbes in Termite Management: Potential Role and Strategies. In: Khan MA, Ahmad W (eds) Termites and Sustainable Management: Volume 2 - Economic Losses and Management. Springer International Publishing, Cham, pp 197-217. doi:10.1007/978-3-319-68726-1_9

    Google Scholar 

  • Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017b) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crops improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer Nature, Singapore. https://doi.org/10.1007/978-981-10-6593-4_22

    Google Scholar 

  • Vey A, Hoagland RE, Butt TM (2001) Toxic metabolites of fungal biocontrol agents. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CAB International, Bristol, pp 311–346

    Google Scholar 

  • Vicente M, Cabello A, Platas G, Basilio A, Diez M, Dreikorn S, Giacobbe R, Onishi J, Meinz M, Kurtz M (2001) Antimicrobial activity of ergokonin A from Trichoderma longibrachiatum. J Appl Microbiol 91:806–813

    Google Scholar 

  • Vinale F, Flematti G, Sivasithamparam K, Lorito M, Marra R, Skelton BW, Ghisalberti EL (2009) Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J Nat Prod 72:2032–2035

    Google Scholar 

  • Vinale F, Marra R, Scala F, Ghisalberti E, Lorito M, Sivasithamparam K (2006) Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol 43:143–148

    Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti E, Marra R, Barbetti M, Li H, Woo S, Lorito M (2008a) A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol 72:80–86

    Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008b) Trichoderma–plant–pathogen interactions. Soil Biol Biochem 40:1–10

    Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Ruocco M, Wood S, Lorito M (2012) Trichoderma secondary metabolites that affect plant metabolism. Nat Prod Commun 7:1545–1550

    Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Woo SL, Nigro M, Marra R, Lombardi N, Pascale A, Ruocco M, Lanzuise S (2014) Trichoderma secondary metabolites active on plants and fungal pathogens. Open Mycol J 8:127–139

    Google Scholar 

  • Vipul K, Mohammad S, Muksesh S, Sonika P, Anuradha S (2014) Role of secondary metabolites produced by commercial Trichoderma species and their effect against soil borne pathogens. Biosens J 3:2

    Google Scholar 

  • Vizcaino JA, Luis S, Basilio A, Vicente F, Gutierrez S, Hermosa MR, Monte E (2005) Screening of antimicrobial activities in Trichoderma isolates representing three Trichoderma sections. Mycol Res 109:1397–1406

    Google Scholar 

  • Wagenaar MM, Clardy J (2001) Dicerandrols, new antibiotic and cytotoxic dimers produced by the fungus Phomopsis l ongicolla Isolated from an endangered mint. J Nat Prod 64:1006–1009

    Google Scholar 

  • Waghunde RR, Shelake RM, Sabalpara AN (2016) Trichoderma: a significant fungus for agriculture and environment. Afr J Agr Res 11:1952–1965

    Google Scholar 

  • Wang C, Knill E, Glick BR, Défago G (2000) Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gac A derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46:898–907

    Google Scholar 

  • Wardle D, Parkinson D, Waller J (1993) Interspecific competitive interactions between pairs of fungal species in natural substrates. Oecologia 94:165–172

    Google Scholar 

  • Watanabe N, Akiba T, Kanai R, Harata K (2006) Structure of an orthorhombic form of xylanase II from Trichoderma reesei and analysis of thermal displacement. Acta Cryst D 62:784–792

    Google Scholar 

  • Weindling R (1934) Studies on a lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizoctonia solani and other soil fungi. Phytopathology 24:1153–1179

    Google Scholar 

  • Windham M (1986) A mechanism for increased plant growth induced by Trichoderma spp. Phytopathology 76:518–521

    Google Scholar 

  • Wipf P, Kerekes AD (2003) Structure reassignment of the fungal metabolite TAEMC161 as the phytotoxin viridiol. J Nat Prod 66:716–718

    Google Scholar 

  • Wong KK, Saddler JN (1992) Trichoderma xylanases, their properties and application. Crit Rev Biotechnol 12:413–435

    Google Scholar 

  • Woo SL, Lorito M (2007) Exploiting the interactions between fungal antagonists, pathogens and the plant for biocontrol. In: Novel biotechnologies for biocontrol agent enhancement and management. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5799-1_6

    Google Scholar 

  • Wu B, Oesker V, Wiese J, Schmaljohann R, Imhoff JF (2014) Two new antibiotic pyridones produced by a marine fungus, Trichoderma sp. strain MF106. Mar Drugs 12:1208–1219

    Google Scholar 

  • Wu YW, Ouyang J, Xiao XH, Gao WY, Liu Y (2006) Antimicrobial properties and toxicity of anthraquinones by microcalorimetric bioassay. Chin J Chem 24:45–50

    Google Scholar 

  • Wuczkowski M, Druzhinina I, Gherbawy Y, Klug B, Prillinger H, Kubicek CP (2003) Species pattern and genetic diversity of Trichoderma in a mid-European, primeval floodplain-forest. Microbiol Res 158:125–133

    Google Scholar 

  • Xia X, Lie TK, Qian X, Zheng Z, Huang Y, Shen Y (2011) Species diversity, distribution, and genetic structure of endophytic and epiphytic Trichoderma associated with banana roots. Microb Ecol 61:619–625

    Google Scholar 

  • Yadav AN (2018) Biodiversity and biotechnological applications of host-specific endophytic fungi for sustainable agriculture and allied sectors. Acta Scientific Microbiol 1:1–5

    Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2016) Bioprospecting of plant growth promoting psychrotrophic Bacilli from cold desert of north western Indian Himalayas. Indian J Exp Biol 54:142–150

    Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2017a) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:1–13

    Google Scholar 

  • Yadav AN, Verma P, Kumar R, Kumar V, Kumar K (2017b) Current applications and future prospects of eco-friendly microbes. EU Voice 3:21–22

    Google Scholar 

  • Yadav N, Yadav A (2018) Biodiversity and biotechnological applications of novel plant growth promoting methylotrophs. J Appl Biotechnol Bioeng 5:342-344.

    Google Scholar 

  • Yadav AN (2019) Endophytic fungi for plant growth promotion and adaptation under abiotic stress conditions. Acta Sci Agric 3:91–93

    Google Scholar 

  • Yadav AN, Kumar V, Prasad R, Saxena AK, Dhaliwal HS (2018a) Microbiome in crops: diversity, distribution and potential role in crops improvements. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, San Diego. https://doi.org/10.1016/B978-0-444-63987-5.00015-3

    Google Scholar 

  • Yadav AN, Verma P, Kumar S, Kumar V, Kumar M, Singh BP, Saxena AK, Dhaliwal HS (2018b) Actinobacteria from rhizosphere: molecular diversity, distributions and potential biotechnological applications. In: Singh B, Gupta V, Passari A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, pp 13–41. https://doi.org/10.1016/B978-0-444-63994-3.00002-3

  • Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018c) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-444-63501-3.00001-6

    Google Scholar 

  • Yadav AN, Yadav N (2018) Stress-adaptive microbes for plant growth promotion and alleviation of drought stress in plants. Acta Sci Agri 2:85–88

    Google Scholar 

  • Yao L, Yang Q, Song J, Tan C, Guo C, Wang L, Qu L, Wang Y (2013) Cloning, annotation and expression analysis of mycoparasitism-related genes in Trichoderma harzianum 88. J Microbiol 51:174–182

    Google Scholar 

  • Yoshihisa H, Zenji S, Fukushi H, Katsuhiro K, Haruhisa S, Takahito S (1989) Production of antibiotics by Pseudomonas cepacia as an agent for biological control of soilborne plant pathogens. Soil Biol Biochem 21:723–728

    Google Scholar 

Download references

Acknowledgment

The authors are grateful to Prof. Harcharan Singh Dhaliwal, Vice Chancellor, Eternal University, Baru Sahib, Himachal Pradesh, India for providing infrastructural facilities and constant encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajar Nath Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, S. et al. (2019). Trichoderma: Biodiversity, Ecological Significances, and Industrial Applications. In: Yadav, A., Mishra, S., Singh, S., Gupta, A. (eds) Recent Advancement in White Biotechnology Through Fungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-10480-1_3

Download citation

Publish with us

Policies and ethics