Skip to main content

Marine Fungal White Biotechnology: An Ecological and Industrial Perspective

  • Chapter
  • First Online:
Recent Advancement in White Biotechnology Through Fungi

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Fungi with their matchless characteristics ranging from greater growth capacity to capability to produce a number of enzymes, etc. have gained attention in the field of biotechnology. Fungi from marine environment, owing to the ability to grow under diverse extreme conditions like high salinity and pH, could prove even better for their white biotechnological applications. Marine-derived fungi have been observed to produce several white biotechnologically important products; however, despite their noteworthy potential, they have not been explored much for their commercial applications. In this chapter, some of the ecologically and industrially relevant potentials of fungi from marine environments have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anese M, Quarta B, Peloux L, Calligaris S (2011) Effect of formulation on the capacity of L-asparaginase to minimize acrylamide formation in short dough biscuits. Food Res Int 44(9):2837–2842

    Google Scholar 

  • Arun A, Raja PP, Arthi R, Ananthi M, Kumar KS, Eyini M (2008) Polycyclic aromatic hydrocarbons (PAHs) biodegradation by basidiomycetes fungi, Pseudomonas isolate, and their cocultures: comparative in vivo and in silico approach. Appl Biochem Biotechnol 151(2–3):132–142

    Google Scholar 

  • Baker PW, Kennedy J, Morrissey J, O’Gara F, Dobson AD, Marchesi JR (2010) Endoglucanase activities and growth of marine-derived fungi isolated from the sponge Haliclona simulans. J Appl Microbiol 108(5):1668–1675

    Google Scholar 

  • Batista-García RA, Sutton T, Jackson SA, Tovar-Herrera OE, Balcázar-López E, del Rayo Sánchez-Carbente M, Sánchez-Reyes A, Dobson AD, Folch-Mallol JL (2017) Characterization of lignocellulolytic activities from fungi isolated from the deep-sea sponge Stelletta normani. PLoS One 12(3):e0173750

    Google Scholar 

  • Baughman GL, Weber EJ (1994) Transformation of dyes and related compounds in anoxic sediment: kinetics and products. Environ Sci Technol 28(2):267–276

    Google Scholar 

  • Beg Q, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56(3–4):326–338

    Google Scholar 

  • Béguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13(1):25–58

    Google Scholar 

  • Bensch K, Braun U, Groenewald JZ, Crous PW (2012) The genus Cladosporium. Stud Mycol 72:1–401

    Google Scholar 

  • Blunt JW, Copp BR, Keyzers RA, Munro MH, Prinsep MR (2015) Marine natural products. Nat Prod Rep 32(2):116–211

    Google Scholar 

  • Bonugli-Santos RC, Durrant LR, Da Silva M, Sette LD (2010a) Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine-derived fungi. Enzym Microb Technol 46(1):32–37

    Google Scholar 

  • Bonugli-Santos RC, Durrant LR, Sette LD (2010b) Laccase activity and putative laccase genes in marine-derived basidiomycetes. Fungal Biol 114(10):863–872

    Google Scholar 

  • Bonugli-Santos RC, dos Santos Vasconcelos MR, Passarini MR, Vieira GA, Lopes VC, Mainardi PH, Dos Santos JA, de Azevedo Duarte L, Otero IV, da Silva Yoshida AM, Feitosa VA (2015) Marine-derived fungi: diversity of enzymes and biotechnological applications. Front Microbiol 6:269

    Google Scholar 

  • Bringmann G, Lang G, Gulder TA, Tsuruta H, Mühlbacher J, Maksimenka K, Steffens S, Schaumann K, Stöhr R, Wiese J, Imhoff JF (2005) The first sorbicillinoid alkaloids, the antileukemic sorbicillactones A and B, from a sponge-derived Penicillium chrysogenum strain. Tetrahedron 61(30):7252–7265

    Google Scholar 

  • Camarero S, Ruiz-Dueñas FJ, Sarkar S, Martínez MJ, Martínez AT (2000) The cloning of a new peroxidase found in lignocellulose cultures of Pleurotus eryngii and sequence comparison with other fungal peroxidases. FEMS Microbiol Lett 191(1):37–43

    Google Scholar 

  • Chávez R, Bull P, Eyzaguirre J (2006) The xylanolytic enzyme system from the genus Penicillium. J Biotechnol 123(4):413–433

    Google Scholar 

  • Chen H, Wang M, Shen Y, Yao S (2014) Optimization of two-species whole-cell immobilization system constructed with marine-derived fungi and its biological degradation ability. Chin J Chem Eng 22:187–192

    Google Scholar 

  • Cheng ZS, Tang WC, Su ZJ, Cai Y, Sun SF, Chen QJ, Wang FH, Lin YC, She ZG, Vrijmoed LL (2008) Identification of mangrove endophytic fungus 1403 (Fusarium proliferatum) based on morphological and molecular evidence. J For Res 19(3):219

    Google Scholar 

  • Chi Z, Ma C, Wang P, Li HF (2007) Optimization of medium and cultivation conditions for alkaline protease production by the marine yeast Aureobasidium pullulans. Bioresour Technol 98(3):534–538

    Google Scholar 

  • Christophersen C, Crescente O, Frisvad JC, Gram L, Nielsen J, Nielsen PH, Rahbæk L (1998) Antibacterial activity of marine-derived fungi. Mycopathologia 143(3):135–138

    Google Scholar 

  • Chung N, Lee IS, Song HS, Bang WG (2000) Mechanisms used by white-rot fungi to degrade lignin and toxic chemicals. J Microbiol Biotechnol 10: 737–752

    Google Scholar 

  • Ciullini I, Tilli S, Scozzafava A, Briganti F (2008) Fungal laccase, cellobiose dehydrogenase, and chemical mediators: combined actions for the decolorization of different classes of textile dyes. Bioresour Technol 99(15):7003–7010

    Google Scholar 

  • D’Souza-Ticlo D, Verma AK, Mathew M, Raghukumar C (2006) Effect of nutrient nitrogen on laccase production, its isozyme pattern and effluent decolorization by the fungus NIOCC# 2a, isolated from mangrove wood. Indian J Mar Sci 34(4):364–372

    Google Scholar 

  • D’Souza-Ticlo D, Sharma D, Raghukumar C (2009) A thermostable metal-tolerant laccase with bioremediation potential from a marine-derived fungus. Mar Biotechnol 11(6):725–737

    Google Scholar 

  • Diwaniyan S, Kharb D, Raghukumar C, Kuhad RC (2010) Decolorization of synthetic dyes and textile effluents by basidiomycetous fungi. Water Air Soil Pollut 210(1–4):409–419

    Google Scholar 

  • Duarte AW, Dayo-Owoyemi I, Nobre FS, Pagnocca FC, Chaud LC, Pessoa A, Felipe MG, Sette LD (2013) Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples. Extremophiles 17(6):1023–1035

    Google Scholar 

  • Ebel R (2010) Terpenes from marine-derived fungi. Mar Drugs 8(8):2340–2368

    Google Scholar 

  • El-Bondkly AM (2012) Molecular identification using ITS sequences and genome shuffling to improve 2-deoxyglucose tolerance and xylanase activity of marine-derived fungus, Aspergillus sp. NRCF5. Appl Biochem Biotechnol 167(8):2160–2173

    Google Scholar 

  • Farag AM, Hassan SW, Beltagy EA, El-Shenawy MA (2015) Optimization of production of anti-tumor L-asparaginase by free and immobilized marine Aspergillus terreus. Egypt J Aquat Res 41(4):295–302

    Google Scholar 

  • Gangadevi V, Muthumary J (2008) Taxol, an anticancer drug produced by an endophytic fungus Bartalinia robillardoides Tassi, isolated from a medicinal plant, Aegle marmelos Correa ex Roxb. World J Microbiol Biotechnol 24(5):717

    Google Scholar 

  • Garo E, Starks CM, Jensen PR, Fenical W, Lobkovsky E, Clardy J (2003) Trichodermamides A and B, cytotoxic modified dipeptides from the marine-derived fungus Trichoderma virens. J Nat Prod 66(3):423–426

    Google Scholar 

  • Ghazala MA, Ibrahimb HA, Shaltouta NA, Alic AE (2016) Biodiesel and bioethanol production from Ulva fasciata Delie biomass via enzymatic pretreatment using Marine-derived Aspergillus niger. Int J Pure App Biosci 4(5):1–6

    Google Scholar 

  • Gupta L, Talwar A, Chauhan PM (2007) Bis and tris indole alkaloids from marine organisms: new leads for drug discovery. Curr Med Chem 14(16):1789–1803

    Google Scholar 

  • Gupta P, Samant K, Sahu A (2012) Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. Inter J Microbiol 18:2012

    Google Scholar 

  • Hendriksen HV, Kornbrust BA, Østergaard PR, Stringer MA (2009) Evaluating the potential for enzymatic acrylamide mitigation in a range of food products using an asparaginase from Aspergillus oryzae. J Agric Food Chem 57(10):4168–4176

    Google Scholar 

  • Hofrichter M (2002) Lignin conversion by manganese peroxidase (MnP). Enzym Microb Technol 30(4):454–466

    Google Scholar 

  • Hofrichter M, Scheibner K, Schneegaß I, Fritsche W (1998) Enzymatic combustion of aromatic and aliphatic compounds by manganese peroxidase from Nematoloma frowardii. Appl Environ Microbiol 64(2):399–404

    Google Scholar 

  • Hosoe T, Okada H, Itabashi T, Nozawa K, Okada K, de Campos Takaki GM, Fukushima K, Miyaji M, Kawai KI (2000) A new pentanorlanostane derivative, Cladosporide A, as a characteristic antifungal agent against Aspergillus fumigatus, isolated form Cladosporium sp. Chem Pharm Bull 48(10):1422–1426

    Google Scholar 

  • Huang Y, Locy R, Weete JD (2004) Purification and characterization of an extracellular lipase from Geotrichum marinum. Lipids 39(3):251–258

    Google Scholar 

  • Huang L, Liu Y, Sun Y, Yan Q, Jiang Z (2013) Biochemical characterization of a novel L-Asparaginase with low glutaminase activity from Rhizomucor miehei and its application in food safety and leukemia treatment. Appl Environ Microbiol. AEM-03523 80(5):1561–1569

    Google Scholar 

  • Husain I, Sharma A, Kumar S, Malik F (2016) Purification and characterization of glutaminase free asparaginase from Enterobacter cloacae: in-vitro evaluation of cytotoxic potential against human myeloid leukemia HL-60 cells. PLoS One 11(2):e0148877

    Google Scholar 

  • Hyde KD, Sarma VV, Jones EB (2000) Morphology and taxonomy of higher marine fungi. In: Marine mycology: a practical approach. Fungal Diversity Press, Hong Kong, pp 172–204

    Google Scholar 

  • Iida I, Nakahara T, Yokochi T, Kamisaka Y, Yagi H, Yamaoka M, Suzuki O (1996) Improvement of docosahexaenoic acid production in a culture of Thraustochytrium aureum by medium optimization. J Ferment Bioeng 81(1):76–78

    Google Scholar 

  • Imhoff JF (2016) Natural products from marine fungi—Still an underrepresented resource. Mar Drugs 14(1):19

    Google Scholar 

  • Intriago P (2012) Marine Microorganisms: perspectives for getting involved in cellulosic ethanol. AMB Express 2(1):46

    Google Scholar 

  • Izadpanah F, Homaei A, Fernandes P, Javadpour S (2018) Marine microbial L-asparaginase: biochemistry, molecular approaches and applications in tumor therapy and in food industry. Microbiol Res 208:99–112

    Google Scholar 

  • Jarvis BB (2003) Stachybotrys chartarum: a fungus for our time. Phytochemistry 64(1):53–60

    Google Scholar 

  • Juturu V, Wu JC (2012) Microbial xylanases: engineering, production and industrial applications. Biotechnol Adv 30(6):1219–1227

    Google Scholar 

  • Kaise H, Shinohara M, Miyazaki W, Izawa T, Nakano Y, Sugawara M, Sugiura K, Sasaki K (1979) Structure of K-76, a complement inhibitor produced by Stachybotrys complementi nov. sp. K-76. J Chem Soc Chem Commun 1979(16):726–727

    Google Scholar 

  • Katia D, Teresa APRS, Ana CF, Armando CD (2012) Analytical techniques for discovery of bioactive compounds from marine fungi. Trends Analy Chem p.34.

    Google Scholar 

  • Khamthong N, Rukachaisirikul V, Phongpaichit S, Preedanon S, Sakayaroj J (2012) Bioactive polyketides from the sea fan-derived fungus Penicillium citrinum PSU-F51. Tetrahedron 68(39):8245–8250

    Google Scholar 

  • Kiiskinen LL, Rättö M, Kruus K (2004) Screening for novel laccase-producing microbes. J Appl Microbiol 97(3):640–646

    Google Scholar 

  • Klemke C, Kehraus S, Wright AD, König GM (2004) New secondary metabolites from the marine endophytic fungus Apiospora montagnei. J Nat Prod 67(6):1058–1063

    Google Scholar 

  • Kobayashi E, Nakano H, Morimoto M, Tamaoki T (1989) Calphostin C (UCN-1028C), a novel microbial compound, is a highly potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun 159(2):548–553

    Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology: the higher fungi. Acad. Press, New York

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (2003) Marine ascomycetes from algae and animal hosts. Bot Mar 46(3):285–306

    Google Scholar 

  • Korkmaz MN, Ozdemir SC, Uzel A (2017) Xylanase production from marine derived Trichoderma pleuroticola 08ÇK001 strain isolated from Mediterranean coastal sediments. J Basic Microbiol 57(10):839–851

    Google Scholar 

  • Kot AM, BÅ‚ażejak S, Kurcz A, Gientka I, Kieliszek M (2016) Rhodotorula glutinis—potential source of lipids, carotenoids, and enzymes for use in industries. Appl Microbiol Biotechnol 100(14):6103–6117

    Google Scholar 

  • Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23(4):411–456

    Google Scholar 

  • Lee SY, Jang SH (2006) Commentaries & Analyses—WHITE BIOTECHNOLOGY. Asia-Pacific Biotech News 10(10):559–563

    Google Scholar 

  • Lee SE, Kim YO, Choi WY, Kang DH, Lee HY, Jung KH (2013) Two-step process using immobilized Saccharomyces cerevisiae and Pichia stipitis for ethanol production from Ulva pertusa Kjellman hydrolysate. J Microbiol Biotechnol 23(10):1434–1444

    Google Scholar 

  • Leyland B, Leu S, Boussiba S (2017) Are thraustochytrids algae? Fungal Biol 121(10):835–840

    Google Scholar 

  • Li Q, Wang G (2009) Diversity of fungal isolates from three Hawaiian marine sponges. Microbiol Res 164(2):233–241

    Google Scholar 

  • LiBerra K, Lindequist U (1995) Marine fungi – a prolific resource of biologically active natural products? Pharmazie 50(9):583–588

    Google Scholar 

  • Lopez MJ, del Carmen Vargas-García M, Suárez-Estrella F, Nichols NN, Dien BS, Moreno J (2007) Lignocellulose-degrading enzymes produced by the ascomycete Coniochaeta ligniaria and related species: application for a lignocellulosic substrate treatment. Enzym Microb Technol 40(4):794–800

    Google Scholar 

  • Mahajan RV, Saran S, Kameswaran K, Kumar V, Saxena RK (2012) Efficient production of L-asparaginase from Bacillus licheniformis with low-glutaminase activity: optimization, scale up and acrylamide degradation studies. Bioresour Technol 125:11–16

    Google Scholar 

  • Mohapatra BR, Banerjee UC, Bapuji M (1998) Characterization of a fungal amylase from Mucor sp. associated with the marine sponge Spirastrella sp. J Biotechnol 60(1–2):113–117

    Google Scholar 

  • Mostafa FA, El Aty AA, Wehaidy HR (2014) Improved Xylanase production by mixing low cost wastes and novel co-culture of three marine-derived fungi in solid state fermentation. Int J Curr Microbiol App Sci 3:336–349

    Google Scholar 

  • Murali TS (2011) L-asparaginase from marine derived fungal endophytes of seaweeds. Mycosphere 2:147–155

    Google Scholar 

  • Ogawa K, Nakamura M, Hayashi M, Yaginuma S, Yamamoto S, Furihata K, Shin-Ya K, Seto H (1995) Stachybocins, novel endothelin receptor antagonists, produced by Stachybotrys sp. M6222. J Antibiot 48(12):1396–1400

    Google Scholar 

  • Osterhage C (2001) Isolation, structure determination and biological activity assessment of secondary metabolites from marine-derived fungi. 2001. (Doctoral dissertation)

    Google Scholar 

  • Pacheco JC, Poltronieri AS, Porsani MV, Zawadneak MA, Pimentel IC (2017) Entomopathogenic potential of fungi isolated from intertidal environments against the cabbage aphid Brevicoryne brassicae (Hemiptera: aphididae). Biocontrol Sci Tech 27(4):496–509

    Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2006) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(1):10

    Google Scholar 

  • Pino NL, Socias C, González-Saldía RR (2015) Marine fungoid producers of DHA, EPA and carotenoids from central and southern Chilean marine ecosystems. Revisbiolog mar y oceanograf 50(3):507–520

    Google Scholar 

  • Pointing SB, Hyde KD (2001) Bio-exploitation of filamentous fungi. Fungal Diversity Press, Hong Kong

    Google Scholar 

  • Polizeli ML, Rizzatti AC, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67(5):577–591

    Google Scholar 

  • Pozdnyakova NN, Rodakiewicz-Nowak J, Turkovskaya OV, Haber J (2006) Oxidative degradation of polyaromatic hydrocarbons catalyzed by blue laccase from Pleurotus ostreatus D1 in the presence of synthetic mediators. Enzym Microb Technol 39(6):1242–1249

    Google Scholar 

  • Pruksakorn P, Arai M, Kotoku N, Vilchèze C, Baughn AD, Moodley P, Jacobs WR Jr, Kobayashi M (2010) Trichoderins, novel aminolipopeptides from a marine sponge-derived Trichoderma sp., are active against dormant mycobacteria. Bioorg Med Chem Lett 20(12):3658–3663

    Google Scholar 

  • Raghukumar C (2008) Marine fungal biotechnology: an ecological perspective. Fungal Divers 31:19–35

    Google Scholar 

  • Raghukumar S (2017) Fungi in coastal and oceanic marine ecosystems. Springer, Cham

    Google Scholar 

  • Raghukumar S, Sharma S, Raghukumar C, Sathe-Pathak V, Chandramohan D (1994) Thraustochytrid and fungal component of marine detritus. IV. Laboratory studies on decomposition of leaves of the mangrove Rhizophora apiculata Blume. J Exp Mar Biol Ecol 183(1):113–131

    Google Scholar 

  • Raghukumar C, Muraleedharan U, Gaud VR, Mishra R (2004) Xylanases of marine fungi of potential use for biobleaching of paper pulp. J Ind Microbiol Biotechnol 31(9):433–441

    Google Scholar 

  • Ramarajan R, Manohar CS (2017) Biological pretreatment and bioconversion of agricultural wastes, using ligninolytic and cellulolytic fungal consortia. Biorem J 21(2):89–99

    Google Scholar 

  • Ravindran C, Naveenan T, Varatharajan GR (2010) Optimization of alkaline cellulase production by the marine-derived fungus Chaetomium sp. using agricultural and industrial wastes as substrates. Bot Mar 53(3):275–282

    Google Scholar 

  • Ravindran C, Varatharajan GR, Karthikeyan A (2011) Role of alkaline-tolerant fungal cellulases in release of total antioxidants from agro-wastes under solid state fermentation. Bioresources 6(3):3142–3154

    Google Scholar 

  • Rowley DC, Kelly S, Kauffman CA, Jensen PR, Fenical W (2003) Halovirs A–E, new antiviral agents from a marine-derived fungus of the genus Scytalidium. Bioorg Med Chem 11(19):4263–4274

    Google Scholar 

  • Ruiz N, Roullier C, Petit K, Sallenave-Namont C, Grovel O, Pouchus YF (2013) 15 Marine-derived Trichoderma: a source of new bioactive metabolites. Biology and Applications, Trichoderma, p 247

    Google Scholar 

  • Ryu DD, Mandels M (1980) Cellulases: biosynthesis and applications. Enzym Microb Technol 2(2):91–102

    Google Scholar 

  • Samdhu DK, Bawa S (1992) Improvement of cellulase activity in Trichoderma. Appl Biochem Biotechnol 34(1):175–183

    Google Scholar 

  • Santos JA, Vieira JM, Videira A, Meirelles LA, Rodrigues A, Taniwaki MH, Sette LD (2016) Marine-derived fungus Aspergillus cf. tubingensis LAMAI 31: a new genetic resource for xylanase production. AMB Express 6(1):25

    Google Scholar 

  • Santos DA, Oliveira MM, Curvelo AA, Fonseca LP, Porto AL (2017) Hydrolysis of cellulose from sugarcane bagasse by cellulases from marine-derived fungi strains. Int Biodeterior Biodegrad 121:66–78

    Google Scholar 

  • Sassa T (1971) Cotylenins, leaf growth substances produced by a fungus: Part I. isolation and characterization of Cotylenins A and B. Agric Biol Chem 35(9):1415–1418

    Google Scholar 

  • Seydametova E, Salihon J, Zainol N, Convey P (2012) Production of Lovastatin by Penicillium spp. soil microfungi. Int J Chem Eng Appl 3(5):337

    Google Scholar 

  • Shewale JG (1982) β-Glucosidase: its role in cellulase synthesis and hydrolysis of cellulose. Int J Biochem 14(6):435–443

    Google Scholar 

  • Song F, Dai H, Tong Y, Ren B, Chen C, Sun N, Liu X, Bian J, Liu M, Gao H, Liu H (2010) Trichodermaketones A− D and 7-O-Methylkoninginin D from the marine fungus Trichoderma koningii. J Nat Prod 73(5):806–810

    Google Scholar 

  • Swe A, Jeewon R, Pointing SB, Hyde KD (2009) Diversity and abundance of nematode-trapping fungi from decaying litter in terrestrial, freshwater and mangrove habitats. Biodivers Conserv 18(6):1695–1714

    Google Scholar 

  • Thatoi H, Behera BC, Mishra RR (2013) Ecological role and biotechnological potential of mangrove fungi: a review. Mycology 4(1):54–71

    Google Scholar 

  • Thirunavukkarasu N, Jahnes B, Broadstock A, Rajulu MG, Murali TS, Gopalan V, Suryanarayanan TS (2015) Screening marine-derived endophytic fungi for xylan-degrading enzymes. Curr Sci 109(1):112–120

    Google Scholar 

  • Torres JM, dela Cruz TE (2013) Production of xylanases by mangrove fungi from the Philippines and their application in enzymatic pretreatment of recycled paper pulps. World J Microbiol Biotechnol 29(4):645–655

    Google Scholar 

  • Tsuda M, Kasai Y, Komatsu K, Sone T, Tanaka M, Mikami Y, Kobayashi JI (2004) Citrinadin A, a novel pentacyclic alkaloid from Marine-derived fungus Penicillium citrinum. Org Lett 6(18):3087–3089

    Google Scholar 

  • Vala AK (2010) Tolerance and removal of arsenic by a facultative marine fungus Aspergillus candidus. Bioresour Technol 101(7):2565–2567

    Google Scholar 

  • Vala AK (2018) On the extreme tolerance and removal of arsenic by a facultative marine fungus Aspergillus sydowii. In: Gautam A, Pathak C (eds) Metallic contamination and its toxicity. Daya Publishing House, India, pp 37–44

    Google Scholar 

  • Vala AK, Dave BP (2015) Explorations on Marine-derived fungi for L-Asparaginase–Enzyme with anticancer potentials. Curr Chem Biol 9(1):66–69

    Google Scholar 

  • Vala AK, Dudhagara DR, Dave BP (2018a) Process-centric and data-centric strategies for enhanced production of L-asparaginase—an anticancer enzyme, using marine-derived Aspergillus niger. J Chemom 32(7): e3024

    Google Scholar 

  • Vala AK, Dudhagara D, Dave B (2018b) Enhanced L-asparaginase production by a marine-derived eurihaline Aspergillus niger strain AKV MKBU–a statistical model. Indian J Geomar Sci 47(6):1172–1179

    Google Scholar 

  • Vala AK, Sachaniya B, Dudhagara D, Panseriya HZ, Gosai H, Rawal R, Dave BP (2018c) Characterization of L-asparaginase from marine-derived Aspergillus niger AKV-MKBU, its antiproliferative activity and bench scale production using industrial waste. Int J Biol Macromol 108:41–46

    Google Scholar 

  • Vala AK, Sutariya V (2012) Trivalent arsenic tolerance and accumulation in two facultative marine fungi. Jundishapur J Microbiol 5(4):542–545

    Google Scholar 

  • Vala AK, Vaidya SY, Dube HC (2000) Cellulase make-up of certain facultative marine fungi isolated from Bhavnagar coast. J Mar Biol Assoc India 42(1–2):153–156

    Google Scholar 

  • Vala AK, Anand N, Bhatt PN, Joshi HV (2004) Tolerance and accumulation of hexavalent chromium by two seaweed associated aspergilli. Mar Pollut Bull 48(9–10):983–985

    Google Scholar 

  • Vala AK, Trivedi HB, Dave BP (2016) Marine-derived fungi: potential candidates for fungal nanobiotechnology. In: Advances and applications through fungal nanobiotechnology. Springer, Cham, pp 47–69

    Google Scholar 

  • Vázquez MJ, Vega A, Rivera-Sagredo A, Jiménez-Alfaro MD, Dıez E, Hueso-Rodrıguez JA (2004) Novel sesquiterpenoids as tyrosine kinase inhibitors produced by Stachybotrys chortarum. Tetrahedron 60(10):2379–2385

    Google Scholar 

  • Verma AK (2011) Potential of marine-derived fungi and their enzymes in bioremediation of industrial pollutants. (Doctoral dissertation, Goa University)

    Google Scholar 

  • Verma AK, Raghukumar C, Verma P, Shouche YS, Naik CG (2010) Four marine-derived fungi for bioremediation of raw textile mill effluents. Biodegradation 21(2):217–233

    Google Scholar 

  • Ward G, Hadar Y, Bilkis I, Dosoretz CG (2003) Mechanistic features of lignin peroxidase-catalyzed oxidation of substituted phenols and 1, 2-dimethoxyarenes. J Biol Chem 278(41):39726–39734

    Google Scholar 

  • Wiese J, Ohlendorf B, Blümel M, Schmaljohann R, Imhoff JF (2011) Phylogenetic identification of fungi isolated from the marine sponge Tethya aurantium and identification of their secondary metabolites. Mar Drugs 9(4):561–585

    Google Scholar 

  • Wood TM (1989) Synergism between enzyme components of Penicillium pinophilum cellulase in solubilizing hydrogen ordered cellulose. J Biochem 260:37–43

    Google Scholar 

  • Woodward J, Wiseman A (1982) Fungal and other β-d-glucosidases—their properties and applications. Enzym Microb Technol l4(2):73–79

    Google Scholar 

  • Wu C, Mai K, Zhang W, Ai Q, Xu W, Wang X, Ma H, Liufu Z (2010) Molecular cloning, characterization and mRNA expression of selenium-dependent glutathione peroxidase from abalone Haliotis discushannai Ino in response to dietary selenium, zinc and iron. Comp Biochem Physiol C: Pharmacol Toxicol 152(2):121–132

    Google Scholar 

  • Wu B, Oesker V, Wiese J, Malien S, Schmaljohann R, Imhoff JF (2014) Spirocyclic drimanes from the marine fungus Stachybotrys sp. strain MF347. Mar Drugs 12(4):1924–1938

    Google Scholar 

  • Wu B, Ohlendorf B, Oesker V, Wiese J, Malien S, Schmaljohann R, Imhoff JF (2015) Acetylcholinesterase inhibitors from a marine fungus Talaromyces sp. strain LF458. Mar Biotechnol 17(1):110–119

    Google Scholar 

  • Xiao Y, Zheng Z, Huang Y, Xu Q, Su W, Song S (2005) Nematicidal and brine shrimp lethality of secondary metabolites from marine-derived fungi. J Xiamen Univ Nat Sci 44(6):847–850

    Google Scholar 

  • Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018) Biodiversity of the Genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18. https://doi.org/10.1016/B978-0-444-63501-3.00001-6

    Google Scholar 

  • Zhang YH, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24(5):452–481

    Google Scholar 

Download references

Acknowledgement

Kind support provided by the Head of Department of Life Sciences, MK Bhavnagar University, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjana K. Vala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vala, A.K., Sachaniya, B.K., Dave, B.P. (2019). Marine Fungal White Biotechnology: An Ecological and Industrial Perspective. In: Yadav, A., Mishra, S., Singh, S., Gupta, A. (eds) Recent Advancement in White Biotechnology Through Fungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-10480-1_15

Download citation

Publish with us

Policies and ethics