Skip to main content

Fungal Enzymes for the Textile Industry

  • Chapter
  • First Online:
Recent Advancement in White Biotechnology Through Fungi

Abstract

The wastewater discharged from the textile industry is toxic to the biological world because of the dark color and discharge of synthetic dyes. The textile industry is the largest consumer of the water for the various processes involved in dyeing and finishing and contribute to the discharge of an equal amount of wastewater or effluent into natural water bodies. It usually blocks sunlight, which hinders the life of aquatic organisms, causing the ecosystem even more problems. These discharged effluents from industry are resistant to degradation in the conventional biological treatment process. The potential of fungi has been proven for their dye degradation abilities. The main advantage to working with fungi is that they are easy to culture and can grow more quickly. The dye degradation ability of the fungi can be enhanced by the molecular genetic manipulation. Fungi are perfectly able to catabolize chlorinated and aromatic hydrocarbon-based organic pollutants, which can be mineralized by using them as an energy source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadulla E, Tzanov T, Costa S, Robra K-H, Cavaco-Paulo A, Gübitz GM (2000) Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl Environ Microbiol 66:3357–3362

    Google Scholar 

  • Abraham K, John G (2007) Development of a classification scheme using a secondary and tertiary amino acid analysis of azoreductase gene. J Med Biol Sci 1:1–5

    Google Scholar 

  • Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomol Ther 4:117–139

    Google Scholar 

  • Ahmad M, Hirz M, Pichler H, Schwab H (2014) Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 98:5301–5317

    Google Scholar 

  • Ahuja SK, Ferreira GM, Moreira AR (2004) Utilization of enzymes for environmental applications. Crit Rev Biotechnol 24:125–154

    Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) The shape and structure of proteins. Garland Science, New York

    Google Scholar 

  • Ali H, Hashem M, Shaker N, Ramadan M, El-Sadek B, Hady MA (2012) Cellulase enzyme in bio-finishing of cotton-based fabrics: effects of process parameters. Res J Text Appar 16:57–65

    Google Scholar 

  • Amorim AM, Gasques MD, Andreaus J, Scharf M (2002) The application of catalase for the elimination of hydrogen peroxide residues after bleaching of cotton fabrics. An Acad Bras Cienc 74:433–436

    Google Scholar 

  • Andreaus J, Olekszyszen DN, Silveria MHL (2014) Processing of cellulosic textile materials with cellulases. In: Cellulose and other naturally occurring polymers, pp 11–19

    Google Scholar 

  • Anjaneyulu Y, Chary NS, Raj DSS (2005) Decolourization of industrial effluents–available methods and emerging technologies–a review. Rev Environ Sci Biotechnol 4:245–273

    Google Scholar 

  • Araujo R, Casal M, Cavaco-Paulo A (2008) Application of enzymes for textile fibres processing. Biocatal Biotransformation 26:332–349

    Google Scholar 

  • Babu BV, Rana HT, Ramakrishna V, Sharma M (2000) COD reduction of reactive dyeing effluent from cotton textile industry. J Inst Public Health Eng 4:5–11

    Google Scholar 

  • Bhatia SC (2017) Pollution control in textile industry. Woodhead Publishing India

    Google Scholar 

  • Brandão PF, Clapp JP, Bull AT (2003) Diversity of nitrile hydratase and amidase enzyme genes in Rhodococcus erythropolis recovered from geographically distinct habitats. Appl Environ Microbiol 69:5754–5766

    Google Scholar 

  • Brijwani K, Rigdon A, Vadlani PV (2010) Fungal laccases: production function and applications in food processing. J Enzym Res 2010:149748

    Google Scholar 

  • Brown G, Singer A, Proudfoot M, Skarina T, Kim Y, Chang C, Dementieva I, Kuznetsova E, Gonzalez CF, Joachimiak A, Savchenko A (2008) Functional and structural characterization of four glutaminases from Escherichia coli and Bacillus subtilis. Biochemistry 47:5724–5735

    Google Scholar 

  • Cegarra J (1996) The state of the art in textile biotechnology. J Soc Dye Colour 112:326–329

    Google Scholar 

  • Chang JS, Kuo TS (2000) Kinetics of bacterial decolorization of azo dye with Escherichia coli NO3. Bioresour Technol 75:107–111

    Google Scholar 

  • Chang JS, Chou C, Lin YC, Lin PJ, Ho JY, Hu TL (2001) Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola. Water Res 35:2841–2850

    Google Scholar 

  • Chary SJ, Reddy SM (1985) Starch-degrading enzymes of two species of Fusarium. Folia Microbiol 30:452–457

    Google Scholar 

  • Cheung HF, Kan CW, Yuen CWM, Yip J, Law MC (2013) Colour fading of textile fabric by plasma treatment. J Text 2013:1–4

    Google Scholar 

  • Choi JW, Song HK, Lee W, Koo KK, Han C, Na BK (2004) Reduction of COD and color of acid and reactive dyestuff wastewater using ozone. Korean J Chem Eng 21:398–403

    Google Scholar 

  • Chung YC, Chen CY (2009) Degradation of azo dye reactive violet 5 by TiO2 photocatalysis. Environ Chem Lett 7:347–352

    Google Scholar 

  • Colomera A, Kuilderd H (2015) Biotechnological washing of denim jeans. In Denim Journal 357–403

    Google Scholar 

  • Cooper GM (2000) The cell: a molecular approach, 2nd edn. The Central Role of Enzymes as Biological Catalysts. Sinauer Associates, Sunderland (MA)

    Google Scholar 

  • Doshi R, Shelke V (2001) Enzymes in textile industry – an environment-friendly approach. Indian J Fibre Text Res 26(1–2):202–206

    Google Scholar 

  • Duca D, Rose DR, Glick BR (2014) Characterization of a nitrilase and a nitrile hydratase from Pseudomonas sp. UW4 that converts indole-3-acetonitrile to produce indole-3-acetic acid. Appl Environ Microbiol 80(15):4640–4649. AEM-00649.

    Google Scholar 

  • Duran N, Duran M (2000) Enzyme applications in the textile industry. Rev Prog Color Relat Top 30:41–44

    Google Scholar 

  • Elisangela F, Andrea Z, Fabio DG, de Menezes Cristiano R, Regina DL, Artur CP (2009) Biodegradation of textile azo dyes by a facultative Staphylococcus arlettae strain VN-11 using a sequential microaerophilic/aerobic process. Int Biodeterior Biodegrad 63:280–288

    Google Scholar 

  • El-Shemy NS, El-Hawary NS, El-Sayed H (2016) Basic and reactive-dyeable polyester fabrics using lipase enzymes. J Chem Eng Process Technol 7:271

    Google Scholar 

  • El-Shishtawy RM (2009) Functional dyes and some hi-tech applications. Int J Photoenergy 2009:21

    Google Scholar 

  • Etters JN, Annis PA (1998) Textile enzyme use: a developing technology. Am Dyest Rep 87:18–23

    Google Scholar 

  • Feitkenhauer H, Fischer D, Fäh D (2003) Microbial desizing using starch as model compound: enzyme properties and desizing efficiency. Biotechnol Prog 19:874–879

    Google Scholar 

  • Fischer-Colbrie G, Matama T, Heumann S, Martinkova L, Paulo AC, Guebitz G (2007) Surface hydrolysis of polyacrylonitrile with nitrile hydrolysing enzymes from Micrococcus luteus BST20. J Biotechnol 129:62–68

    Google Scholar 

  • Franciscon E, Grossman MJ, Paschoal JAR, Reyes FGR, Durrant LR (2012) Decolorization and biodegradation of reactive sulfonated azo dyes by a newly isolated Brevibacterium sp. strain VN-15. Springerplus 1:37

    Google Scholar 

  • Gessesse A, Mulaa F, Lyantagaye SL, Nyina-Wamwiza L, Mattiasson B, Pandey A (2011) Industrial enzymes for sustainable bio-economy: large scale production and application in industry environment and agriculture in Eastern Africa. International Livestock Research Institute (ILRI) 1–38

    Google Scholar 

  • Gong JS, Lu ZM, Li H, Shi JS, Zhou ZM, Xu ZH (2012) Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb Cell Factories 11:142

    Google Scholar 

  • Grootegoed JA, Lauwers AM, Heinen W (1973) Separation and partial purification of extracellular amylase and protease from Bacillus caldolyticus. Arch Microbiol 90:223–232

    Google Scholar 

  • Gupta VK, Ali I, Saini VK, Van Gerven T, Van der Bruggen B, Vandecasteele C (2005) Removal of dyes from wastewater using bottom ash. Ind Eng Chem Res 44:3655–3664

    Google Scholar 

  • Gurung N, Ray S, Bose S, Rai V (2013) A broader view: microbial enzymes and their relevance in industries medicine and beyond. Biomed Res Int 2013:329121

    Google Scholar 

  • Haq UN, Khan MMR, Khan MMR (2015) Investigation of the bulk surface and transfer properties of chlorine bleached denim apparel at different condition. Eur Sci J 11(12):1–15

    Google Scholar 

  • Hasanbeigi A, Price L (2012) A review of energy use and energy efficiency technologies for the textile industry. Renew Sust Energ Rev 16:3648–3665

    Google Scholar 

  • Hoondal G, Tiwari R, Tewari R, Dahiya NBQK, Beg Q (2002) Microbial alkaline pectinases and their industrial applications: a review. Appl Microbiol Biotechnol 59:409–418

    Google Scholar 

  • Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink V (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:45

    Google Scholar 

  • Ibrahim NA, Eid BM (2016) Potential applications of sustainable polymers in functionalization of cellulosic textile materials. Handb Sustain Polym Process Appl 6:215–264

    Google Scholar 

  • Jadhav JP, Phugare SS (2012) Textile dyes: general information and environmental aspects. In: Non-conventional textile wastewater treatment. Nova Science, New York, pp 1–345

    Google Scholar 

  • Jain RK, Kapur M, Labana S, Lal B, Sarma PM, Bhattacharya D, Thakur IS (2005) Microbial diversity: application of microorganisms for the biodegradation of xenobiotics. Curr Sci 89:101–112

    Google Scholar 

  • Jaros D, Partschefeld C, Henle T, Rohm H (2006) Transglutaminase in dairy products: chemistry physics applications. J Texture Stud 37:113–155

    Google Scholar 

  • Jeon JR, Baldrian P, Murugesan K, Chang YS (2012) Laccase-catalysed oxidations of naturally occurring phenols: from in vivo biosynthetic pathways to green synthetic applications. Microb Biotechnol 5:318–332

    Google Scholar 

  • Joshi M, Bansal R, Purwar R (2004) Colour removal from textile effluents. Indian J Fibre Text Res 29:239–259

    Google Scholar 

  • Kalme S, Jadhav S, Jadhav M, Govindwar S (2009) Textile dye degrading laccase from Pseudomonas desmolyticum NCIM 2112. Enzym Microb Technol 44:65–71

    Google Scholar 

  • Kamble AL, Banoth L, Meena VS, Singh A, Chisti Y, Banerjee UC (2013) Nitrile hydratase of Rhodococcus erythropolis: characterization of the enzyme and the use of whole cells for biotransformation of nitriles. Biotech 3:319–330

    Google Scholar 

  • Kanth SV, Venba R, Madhan B, Chandrababu NK, Sadulla S (2008) Studies on the influence of bacterial collagenase in leather dyeing. Dyes Pigments 76:338–347

    Google Scholar 

  • Karapinar E, Sariisik MO (2004) Scouring of cotton with cellulases pectinases and proteases. Fibres Text East Eur 12:79–82

    Google Scholar 

  • Kaur P, Singh S, Kumar V, Singh N, Singh J (2017) Effect of rhizobacteria on arsenic uptake by macrophyte Eichhornia crassipes (Mart.) Solms. Int J Phytoremediation 20:114–120

    Google Scholar 

  • Keck A, Klein J, Kudlich M, Stolz A, Knackmuss HJ, Mattes R (1997) Reduction of azo dyes by redox mediators originating in the naphthalenesulfonic acid degradation pathway of Sphingomonas sp. strain BN6. Appl Environ Microbiol 63:3684–3690

    Google Scholar 

  • Kim TU, Gu BG, Jeong JY, Byun SM, Shin YC (1995) Purification and characterization of a maltotetraose-forming alkaline (alpha)-amylase from an alkalophilic Bacillus strain GM8901. Appl Environ Microbiol 61:3105–3112

    Google Scholar 

  • Kim S, Lopez C, Güebitz G, Cavaco-Paulo A (2008) Biological coloration of flax fabrics with flavonoids using laccase from Trametes hirsuta. Eng Life Sci 8:324–330

    Google Scholar 

  • Koch R, Spreinat A, Lemke K, Antranikian G (1991) Purification and properties of a hyperthermoactive α-amylase from the archaeobacterium Pyrococcus woesei. Arch Microbiol 155:572–578

    Google Scholar 

  • Kohli P, Kalia M, Gupta R (2015) Pectin methylesterases: a review. J Bioprocess Biotech 5:1

    Google Scholar 

  • Krishnan T, Chandra AK (1983) Purification and characterization of α-amylase from Bacillus licheniformis CUMC305. Appl Environ Microbiol 46:430–437

    Google Scholar 

  • Kudanga T, Nyanhongo GS, Guebitz GM, Burton S (2011) Potential applications of laccase-mediated coupling and grafting reactions: a review. Enzym Microb Technol 48:195–208

    Google Scholar 

  • Kumar A, Purtell C, Lepola M (1994) Enzymatic treatment of man-made cellulosic fabrics. Text Chem Color 26:25–28

    Google Scholar 

  • Kumar V, Upadhyay N, Singh S, Singh J, Kaur P (2013) Thin-layer chromatography: comparative estimation of soil’s atrazine. Curr World Environ 8:469–472

    Google Scholar 

  • Kumar V, Upadhyay N, Kumar V, Kaur S, Singh J, Singh S, Datta S (2014a) Environmental exposure and health risks of the insecticide monocrotophos – a review. J Biodivers Environ Sci 5:111–120

    Google Scholar 

  • Kumar V, Singh S, Manhas A, Singh J, Singla S, Kaur P (2014b) Bioremediation of petroleum hydrocarbon by using Pseudomonas species isolated from petroleum contaminated soil. Orient J Chem 30:1771–1776

    Google Scholar 

  • Kumar V, Singh S, Kashyap N, Singla S, Bhadrecha P, Kaur P (2015a) Bioremediation of heavy metals by employing resistant microbial isolates from agricultural soil irrigated with industrial waste water. Orient J Chem 31:357–361

    Google Scholar 

  • Kumar V, Singh S, Singh J, Upadhyay N (2015b) Potential of plant growth promoting traits by bacteria isolated from heavy metal contaminated soils. Bull Environ Contam Toxicol 94:807–815

    Google Scholar 

  • Kumar V, Kaur S, Singh S, Upadhyay N (2016) Unexpected formation of N′-phenyl-thiophosphorohydrazidic acid O S-dimethyl ester from acephate: chemical biotechnical and computational study. 3 Biotech 6:1

    Google Scholar 

  • Kumar V, Singh S, Singh R, Upadhyay N, Singh J (2017) Design synthesis and characterization of 2 2-bis (2 4-dinitrophenyl)-2-(phosphonatomethylamino) acetate as a herbicidal and biological active agent. J Chem Biol 10:179–190

    Google Scholar 

  • Lade H, Kadam A, Paul D, Govindwar S (2015) Biodegradation and detoxification of textile azo dyes by bacterial consortium under sequential microaerophilic/aerobic processes. EXCLI J 14:158

    Google Scholar 

  • Laderman KA, Asada K, Uemori T, Mukai H, Taguchi Y, Kato I, Anfinsen CB (1993) Alpha-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. Cloning and sequencing of the gene and expression in Escherichia coli. J Biol Chem 268:24402–24407

    Google Scholar 

  • Lee SP, Morikawa M, Takagi M, Imanaka T (1994) Cloning of the aapT gene and characterization of its product alpha-amylase-pullulanase (AapT) from thermophilic and alkaliphilic Bacillus sp. strain XAL601. Appl Environ Microbiol 60:3764–3773

    Google Scholar 

  • Levasseur A, Piumi F, Coutinho PM, Rancurel C, Asther M, Delattre M, Henrissat B, Pontarotti P, Asther M, Record E (2008) FOLy: an integrated database for the classification and functional annotation of fungal oxidoreductases potentially involved in the degradation of lignin and related aromatic compounds. Fungal Genet Biol 45:638–645

    Google Scholar 

  • Li SYX, Yang S, Zhu M, Wang X (2012) Technology prospecting on enzymes: application marketing and engineering. Comput Struct Biotechnol J 2:e201209017

    Google Scholar 

  • Linenberger KJ, Bretz SL (2015) Biochemistry students' ideas about how an enzyme interacts with a substrate. Biochem Mol Biol Educ 43:213–222

    Google Scholar 

  • Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4:140

    Google Scholar 

  • Ma J, Song W, Chen C, Ma W, Zhao J, Tang Y (2005) Fenton degradation of organic compounds promoted by dyes under visible irradiation. Environ Sci Technol 39:5810–5815

    Google Scholar 

  • Maier J, Kandelbauer A, Erlacher A, Cavaco-Paulo A, Gübitz GM (2004) A new alkali-thermostable azoreductase from Bacillus sp. strain SF. Appl Environ Microbiol 70:837–844

    Google Scholar 

  • Mar SS, Mori H, Lee JH, Fukuda K, Saburi W, Fukuhara A, Okuyama M, Chiba S, Kimura A (2003) Purification characterization and sequence analysis of two α-amylase isoforms from Azuki bean Vigna angularis showing different affinity towards β-cyclodextrin Sepharose. Biosci Biotechnol Biochem 67:1080–1093

    Google Scholar 

  • Martinkova L, Křen V (2002) Nitrile-and amide-converting microbial enzymes: stereo-, regio-and chemoselectivity. Biocatal Biotransformation 20:73–93

    Google Scholar 

  • Merlin M, Gecchele E, Capaldi S, Pezzotti M, Avesani L (2014) Comparative evaluation of recombinant protein production in different biofactories: the green perspective. Biomed Res Int 2014:136419

    Google Scholar 

  • Mikolajczyk T, Rabiej S, Szparaga G, Boguń M, Fraczek-Szczypta A, Błażewicz S (2009) Strength properties of polyacrylonitrile (PAN) fibres modified with carbon nanotubes with respect to their porous and supramolecular structure. Fibres Text East Eur 17:13–20

    Google Scholar 

  • Mishra V, Gupta A, Kaur P, Singh S, Singh N, Gehlot P, Singh J (2016) Synergistic effects of Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in bioremediation of iron contaminated soils. Int J Phytoremediation 18:697–703

    Google Scholar 

  • Mojsov K (2012a) Biotechnological applications of pectinases in textile processing and bioscouring of cotton fibers. In: II International Conference Industrial Engineering and Environmental Protection Conference Proceedings, Zrenjanin, Serbia 314–322

    Google Scholar 

  • Mojsov K (2012b) Enzyme applications in textile preparatory process: a review. International J Mang IT Eng 2:272–295

    Google Scholar 

  • Mondal P, Baksi S, Bose D (2017) Study of environmental issues in textile industries and recent wastewater treatment technology. World Sci News 61:98–109

    Google Scholar 

  • Morgado J, Cavaco-Paulo A, Rousselle MA (2000) Enzymatic treatment of lyocell-clarification of depilling mechanisms. Text Res J 70:696–699

    Google Scholar 

  • Moutaouakkil A, Zeroual Y, Dzayri FZ, Talbi M, Lee K, Blaghen M (2003) Purification and partial characterization of azoreductase from Enterobacter agglomerans. Arch Biochem Biophys 413:139–146

    Google Scholar 

  • Muthu SS (ed) (2014) Roadmap to sustainable textiles and clothing: eco-friendly raw materials technologies and processing methods. Springer, Hong Kong

    Google Scholar 

  • Nagasawa T, Wieser M, Nakamura T, Iwahara H, Yoshida T, Gekko K (2000) Nitrilase of Rhodococcus rhodochrous J1: conversion into the active form by subunit association. Eur J Biochem 267:138–144

    Google Scholar 

  • Namrata M (2012) Naturally Coloured Cotton Designer's Apparel: an Emerging Trend in Khadi World (Doctoral dissertation UAS Dharwad)

    Google Scholar 

  • Nierstrasz V, Cavaco-Paulo A (eds) (2010) Advances in textile biotechnology. Woodhead Publishing Series in Textiles. Cambridge, UK: Woodhead

    Google Scholar 

  • Nigam PS (2013) Microbial enzymes with special characteristics for biotechnological applications. Biomol Ther 3:597–611

    Google Scholar 

  • Okamoto S, Eltis LD (2007) Purification and characterization of a novel nitrile hydratase from Rhodococcus sp. RHA1. Mol Microbiol 65:828–838

    Google Scholar 

  • Oller I, Malato S, Sánchez-Pérez J (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination – a review. Sci Total Environ 409:4141–4166

    Google Scholar 

  • Osuji AC, Eze SOO, Osayi EE, Chilaka FC (2014) Biobleaching of industrial important dyes with peroxidase partially purified from garlic. Sci World J 2014:183163

    Google Scholar 

  • Ozturk E, Koseoglu H, Karaboyacı M, Yigit NO, Yetis U, Kitis M (2016) Minimization of water and chemical use in a cotton/polyester fabric dyeing textile mill. J Clean Prod 130:92–102

    Google Scholar 

  • Palanivelu P (2006) Polygalacturonases: active site analyses and mechanism of action. Indian J Biotechnol 5:148–162

    Google Scholar 

  • Pedrolli DB, Monteiro AC, Gomes E, Carmona EC (2009) Pectin and pectinases: production characterization and industrial application of microbial pectinolytic enzymes. Open Biotechnol J 3:9–18

    Google Scholar 

  • Pereira L, Alves M (2012) Dyes – environmental impact and remediation. In: Environmental protection strategies for sustainable development. Springer, Dordrecht, pp 111–162

    Google Scholar 

  • Periolatto M, Ferrero F, Giansetti M, Mossotti R, Innocenti R (2011) Influence of protease on dyeing of wool with acid dyes. Open Chem 9:157–164

    Google Scholar 

  • Polak J, Jarosz-Wilkolazka A, Szuster-Ciesielska A, Wlizlo K, Kopycinska M, Sojka-Ledakowicz J, Lichawska-Olczyk J (2016) Toxicity and dyeing properties of dyes obtained through laccase-mediated synthesis. J Clean Prod 112:4265–4272

    Google Scholar 

  • Popli S, Patel UD (2015) Destruction of azo dyes by anaerobic–aerobic sequential biological treatment: a review. Int J Environ Sci Technol 12:405–420

    Google Scholar 

  • Porta R, Di Pierro P, Sorrentino A, Mariniello L (2011) Promising perspectives for transglutaminase in “bioplastics” production. J Biotechnol Biomaterial 1:1–4

    Google Scholar 

  • Prasad S, Bhalla TC (2010) Nitrile hydratases (NHases): at the interface of academia and industry. Biotechnol Adv 28:725–741

    Google Scholar 

  • Ramalho PA, Cardoso MH, Cavaco-Paulo A, Ramalho MT (2004) Characterization of azo reduction activity in a novel ascomycete yeast strain. Appl Environ Microbiol 70:2279–2288

    Google Scholar 

  • Rani B, Kumar V, Singh J, Bisht S, Teotia P, Sharma S, Kela R (2014) Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability. Braz J Microbiol 45:1055–1063

    Google Scholar 

  • Ratanakhanokchai K, Kaneko J, Kamio Y, Izaki K (1992) Purification and properties of a maltotetraose-and maltotriose-producing amylase from Chloroflexus aurantiacus. Appl Environ Microbiol 58:2490–2494

    Google Scholar 

  • Robinson PK (2015) Enzymes: principles and biotechnological applications. Essays Biochem 59:1–41

    Google Scholar 

  • Robinson WG, Hook RH (1964) Ricinine nitrilase I. Reaction product and substrate specificity. J Biol Chem 239:4257–4262

    Google Scholar 

  • Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172

    Google Scholar 

  • Rungruangkitkrai N, Mongkholrattanasit R (2012) Eco-friendly of textiles dyeing and printing with natural dyes. In: RMUTP international conference: textiles and fashion, vol 3, Bangkok, pp 1–17

    Google Scholar 

  • Sadhu S, Maiti TK (2013) Cellulase production by bacteria: a review. Br Microbiol Res J 3:235

    Google Scholar 

  • Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK (2017) Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech 7:1–11

    Google Scholar 

  • Saini RD (2017) Textile organic dyes: polluting effects and elimination methods from textile wastewater. Int J Chem Eng Res 9:121–136

    Google Scholar 

  • Sawada K, Tokino S, Ueda M, Wang XY (1998) Bioscouring of cotton with pectinase enzyme. J Soc Dye Colour 114:333–336

    Google Scholar 

  • Saxena AK, Yadav AN, Rajawat M, Kaushik R, Kumar R, Kumar M, Prasanna R, Shukla L (2016) Microbial diversity of extreme regions: an unseen heritage and wealth. Indian J Plant Genet Resour 29:246–248

    Google Scholar 

  • Schwermann B, Pfau K, Liliensiek B, Schleyer M, Fischer T, Bakker EP (1994) Purification properties and structural aspects of a thermoacidophilic α-amylase from Alicyclobacillus Acidocaldarius ATCC 27009: insight into acidostability of proteins. Eur J Biochem 226:981–991

    Google Scholar 

  • Seshadri S, Bishop PL, Agha AM (1994) Anaerobic/aerobic treatment of selected azo dyes in wastewater. Waste Manag 14:127–137

    Google Scholar 

  • Sharma K, O'Neill P, Oakes J, Batchelor SN, Madhava Rao BS (2003) One-electron oxidation and reduction of different tautomeric forms of azo dyes: a pulse radiolysis study. J Phys Chem A 107:7619–7628

    Google Scholar 

  • Shekher R, Sehgal S, Kamthania M, Kumar A (2011) Laccase: microbial sources production purification and potential biotechnological applications. J Enzym Res 2011:217861

    Google Scholar 

  • Shen W, Xue Y, Liu Y, Kong C, Wang X, Huang M, Cai M, Zhou X, Zhang Y, Zhou M (2016) A novel methanol-free Pichia pastoris system for recombinant protein expression. Microb Cell Factories 15:178

    Google Scholar 

  • Singh PK, Singh RL (2017) Bio-removal of azo dyes: a review. Int J Appl Sci Biotechnol 5:108–126

    Google Scholar 

  • Singh R, Sharma R, Tewari N, Rawat DS (2006) Nitrilase and its application as a ‘green’ catalyst. Chem Biodivers 3:1279–1287

    Google Scholar 

  • Singh R, Kumar M, Mittal A, Mehta PK (2016a) Microbial enzymes: industrial progress in 21st century. 3 Biotech 6:174

    Google Scholar 

  • Singh RN, Gaba S, Yadav AN, Gaur P, Gulati S, Kaushik R, Saxena AK (2016b) First, high quality draft genome sequence of a plant growth promoting and cold active enzymes producing psychrotrophic Arthrobacter agilis strain L77. Stand Genomic Sci 11:54. https://doi.org/10.1186/s40793-016-0176-4

    Google Scholar 

  • Singh S, Singh N, Kumar V, Datta S, Wani AB, Singh D, Singh J (2016c) Toxicity monitoring and biodegradation of the fungicide carbendazim. Environ Chem Lett 14:317–329

    Google Scholar 

  • Singh S, Kumar V, Chauhan A, Datta S, Wani AB, Singh N, Singh J (2017a) Toxicity degradation and analysis of the herbicide atrazine. Environ Chem Lett 16:1–27

    Google Scholar 

  • Singh S, Kumar V, Upadhyay N, Singh J, Singla S, Datta S (2017b) Efficient biodegradation of acephate by Pseudomonas pseudoalcaligenes PS-5 in the presence and absence of heavy metal ions [Cu(II) and Fe(III)] and humic acid. 3 Biotech 7:262

    Google Scholar 

  • Sivaramakrishnan S, Gangadharan D, Nampoothiri KM, Soccol CR, Pandey A (2006) a-Amylases from microbial sources – an overview on recent developments. Food Technol Biotechnol 44:173–184

    Google Scholar 

  • Sukharnikov LO, Cantwell BJ, Podar M, Zhulin IB (2011) Cellulases: ambiguous nonhomologous enzymes in a genomic perspective. Trends Biotechnol 29:473–479

    Google Scholar 

  • Suman A, Verma P, Yadav AN, Saxena AK (2015) Bioprospecting for extracellular hydrolytic enzymes from culturable thermotolerant bacteria isolated from Manikaran thermal springs. Res J Biotechnol 10:33–42

    Google Scholar 

  • Tierny Y, Bechet M, Joncquiert JC, Dubourguier HC, Guillaume JB (1994) Molecular cloning and expression in Escherichia coli of genes encoding pectate lyase and pectin methylesterase activities from Bacteroides thetaiotaomicron. J Appl Bacteriol 76:592–602

    Google Scholar 

  • Tripathi P, Kumari A, Rath P, Kayastha AM (2007) Immobilization of α-amylase from mung beans (Vigna radiata) on Amberlite MB 150 and chitosan beads: a comparative study. J Mol Catal B Enzym 49:69–74

    Google Scholar 

  • Ul Aleem A (2013) An investigation of alternatives to reductive clearing in the dyeing of polyester (Doctoral dissertation Heriot Watt University)

    Google Scholar 

  • Van der Zee FP, Villaverde S (2005) Combined anaerobic–aerobic treatment of azo dyes – a short review of bioreactor studies. Water Res 39:1425–1440

    Google Scholar 

  • Vastrik I, D'Eustachio P, Schmidt E, Joshi-Tope G, Gopinath G, Croft D, de Bono B, Gillespie M, Jassal B, Lewis S, Matthews L (2007) Reactome: a knowledge base of biologic pathways and processes. Genome Biol 8:R39

    Google Scholar 

  • Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crops improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 543–580. https://doi.org/10.1007/978-981-10-6593-4_22

    Google Scholar 

  • Vihinen M, Mantsala P (1989) Microbial amylolytic enzymes. Crit Rev Biochem Mol Biol 24:329–418

    Google Scholar 

  • Wang H, Su JQ, Zheng XW, Tian Y, Xiong XJ, Zheng TL (2009) Bacterial decolorization and degradation of the reactive dye Reactive Red 180 by Citrobacter sp. CK3. Int Biodeterior Biodegrad 63:395–399

    Google Scholar 

  • Windish WW, Mhatre N (1965) Microbial amylases. In: Advances in applied microbiology, vol 7. Academic Press, New York, pp 273–304

    Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016a) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307

    Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2016b) Bioprospecting of plant growth promoting psychrotrophic Bacilli from cold desert of north western Indian Himalayas. Indian J Exp Biol 54:142–150

    Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2017a) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:1–13

    Google Scholar 

  • Yadav AN, Verma P, Kumar R, Kumar V, Kumar K (2017b) Current applications and future prospects of eco-friendly microbes. EU Voice 3:21–22

    Google Scholar 

  • Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18. https://doi.org/10.1016/B978-0-444-63501-3.00001-6

    Google Scholar 

  • Young L, Yu J (1997) Ligninase-catalysed decolorization of synthetic dyes. Water Res 31:1187–1193

    Google Scholar 

  • Yumoto I, Ichihashi D, Iwata H, Istokovics A, Ichise N, Matsuyama H, Okuyama H, Kawasaki K (2000) Purification and characterization of a catalase from the facultatively psychrophilic bacterium Vibrio rumoiensis S-1T exhibiting high catalase activity. J Bacteriol 182:1903–1909

    Google Scholar 

  • Zámocký M, Gasselhuber B, Furtmüller PG, Obinger C (2012) Molecular evolution of hydrogen peroxide degrading enzymes. Arch Biochem Biophys 525:131–144

    Google Scholar 

  • Zhang XZ, Zhang YHP (2013) Cellulases: characteristics sources production and applications. In: Bioprocessing technologies in biorefinery for sustainable production of fuels chemicals and polymers. Wiley, New York, pp 131–146

    Google Scholar 

Download references

Acknowledgements

The authors are highly grateful to the Dean, Research and Development, Lovely Professional University, for providing necessary research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joginder Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karnwal, A. et al. (2019). Fungal Enzymes for the Textile Industry. In: Yadav, A., Mishra, S., Singh, S., Gupta, A. (eds) Recent Advancement in White Biotechnology Through Fungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-10480-1_14

Download citation

Publish with us

Policies and ethics