Skip to main content

Endophytic Fungi: Biodiversity, Ecological Significance, and Potential Industrial Applications

  • Chapter
  • First Online:

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Endophytic fungi are abundant and have been reported from all tissues such as roots, stems, leaves, flowers, and fruits. In recent years, research into the beneficial use of endophytic fungi has increased worldwide. In this chapter, we critically review the production of a wide range of secondary metabolites, bioactive compounds from fungal endophytes that are a potential alternative source of secondary plant metabolites and natural producers of high-demand drugs. One of the major areas in endophytic research that holds both economic and environmental potential is bioremediation. During their life span, microbes adapt fast to environmental pollutants and remediate their surrounding microenvironment. In the last two decades, bioremediation has arisen as a suitable alternative for remediating large polluted sites. Endophytic fungi producing ligninolytic enzymes have possible biotechnological applications in lignocellulosic biorefineries. This chapter highlights the recent progress that has been made in screening endophytic fungi for the production and commercialization of certain biologically active compounds of fungal endophytic origin.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Raheem A, Shearer C (2002) Extracellular enzyme production by freshwater ascomycetes. Fungal Div 11:1–19

    Google Scholar 

  • Abrunhosa L, Oliveira F, Dantas D, Gonçalves C, Belo I (2013) Lipase production by Aspergillus ibericus using olive mill wastewater. Bioprocess Biosyst Eng 36:285–291

    Google Scholar 

  • Adav SS, Sze SK (2014) Trichoderma secretome: an overview. In: Gupta VK, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy MG (eds) Biotechnology and biology of Trichoderma. Elsevier, Amsterdam, pp 103–114

    Google Scholar 

  • Adnan M, Alshammari E, Ashraf SA, Patel K, Lad K, Patel M (2018) Physiological and molecular characterization of biosurfactant producing endophytic fungi Xylaria regalis from the cones of Thuja plicata as a potent plant growth promoter with its potential application. BioMed Res Int. https://doi.org/10.1155/2018/7362148

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257

    Google Scholar 

  • Ahmad N, Hamayun M, Khan SA, Khan AL, Lee I-J, Shin D-H (2010) Gibberellin-producing endophytic fungi isolated from Monochoria vaginalis. J Microbiol Biotechnol 20:1744–1749

    Google Scholar 

  • Alshammari AM, Adnan FM, Mustafa H, Hammad N (2011) Bioethanol fuel production from rotten banana as an environmental waste management and sustainable energy. Afr. J Microbiol Res 5:586–598

    Google Scholar 

  • Aly AH, Edrada-Ebel R, Wray V, Müller WE, Kozytska S, Hentschel U, Proksch P, Ebel R (2008) Bioactive metabolites from the endophytic fungus Ampelomyces sp. isolated from the medicinal plant Urospermum picroides. Phytochemistry 69:1716–1725

    Google Scholar 

  • Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl microbiol Biotechnol 90:1829–1845

    Google Scholar 

  • Amin N (2013) Diversity of endophytic fungi from root of Maize var. Pulut (waxy corn local variety of South Sulawesi, Indonesia). Int J Curr Microbiol App Sci 2:148–154

    Google Scholar 

  • Amirita A, Sindhu P, Swetha J, Vasanthi N, Kannan K (2012) Enumeration of endophytic fungi from medicinal plants and screening of extracellular enzymes. World J Sci Technol 2:13–19

    Google Scholar 

  • Anbu P, Noh M-J, Kim D-H, Seo J-S, Hur B-K, Min KH (2011) Screening and optimization of extracellular lipases by Acinetobacter species isolated from oil-contaminated soil in South Korea. Afr J Biotechnol 10:4147–4156

    Google Scholar 

  • Anderson AJ, Kwon S-I, Carnicero A, Falcón MA (2005) Two isolates of Fusarium proliferatum from different habitats and global locations have similar abilities to degrade lignin. FEMS Microbiol Lett 249:149–155

    Google Scholar 

  • Aranda FJ, Teruel JA, Ortiz A (2005) Further aspects on the hemolytic activity of the antibiotic lipopeptide iturin A. Biochim Biophys Acta Biomembr 1713:51–56

    Google Scholar 

  • Aravindan R, Anbumathi P, Viruthagiri T (2007) Lipase applications in food industry. Indian J Biotechnol 6:141–158

    Google Scholar 

  • Arivudainambi UE, Anand TD, Shanmugaiah V, Karunakaran C, Rajendran A (2011) Novel bioactive metabolites producing endophytic fungus Colletotrichum gloeosporioides against multidrug-resistant Staphylococcus aureus. FEMS Immunol Med Microbiol 61:340–345

    Google Scholar 

  • Arora J, Ramawat KG (2017) An introduction to endophytes. In: Maheshwari D (ed) Endophytes: biology and biotechnology. Sustainable development and biodiversity, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-66541-2_1

    Google Scholar 

  • Asaf S, Hamayun M, Khan AL, Waqas M, Khan MA, Jan R, Lee I-J, Hussain A (2018) Salt tolerance of Glycine max. L induced by endophytic fungus Aspergillus flavus CSH1, via regulating its endogenous hormones and antioxidative system. Plant Physiol Biochem 128:13–23

    Google Scholar 

  • Ayob FW, Simarani K (2016) Endophytic filamentous fungi from a Catharanthus roseus: identification and its hydrolytic enzymes. Saudi Pharm J 24:273–278

    Google Scholar 

  • Azevedo JL, Maccheroni W Jr, Pereira JO, de Araújo WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotech 3:15–16

    Google Scholar 

  • Bacon CW, White JF (2000) Physiological adaptations in the evolution of endophytism in the Clavicipitaceae. In: Redlin SC, Carris LM (eds) Microbial endophytes. Marcel Dekker, New York, pp 237–261

    Google Scholar 

  • Bal HB, Das S, Dangar TK, Adhya TK (2013) ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants. J Basic Microbiol 53:972–984

    Google Scholar 

  • Barr DP, Aust SD (1994) Mechanisms white rot fungi use to degrade pollutants. Environ Sci Technol 28:78A–87A

    Google Scholar 

  • Barranco FT, Saalfield SL, Tenbus FJ, Shedd BP (2012) Subsurface fate and transport of chemicals. In: Gulliver J (ed) Transport and fate of chemicals in the environment. Springer, New York. https://doi.org/10.1007/978-1-4614-5731-2_13

    Google Scholar 

  • Barrasa J, Martínez A, Martínez M (2009) Isolation and selection of novel basidiomycetes for decolorization of recalcitrant dyes. Folia Microbiol 54(1):59. https://doi.org/10.1007/s12223-009-0009-6

    Google Scholar 

  • Bashyal BP, Wijeratne EK, Faeth SH, Gunatilaka AL (2005) Globosumones A−C, cytotoxic orsellinic acid esters from the Sonoran desert endophytic fungus Chaetomium globosum. J Nat Prod 68:724–728

    Google Scholar 

  • Battestin V, Macedo GA (2007) Effects of temperature, pH and additives on the activity of tannase produced by Paecilomyces variotii. Electron J Biotechnol 10:191–199

    Google Scholar 

  • Bezerra J, Santos M, Svedese V, Lima D, Fernandes M, Paiva L, Souza-Motta C (2012) Richness of endophytic fungi isolated from Opuntia ficus-indica Mill.(Cactaceae) and preliminary screening for enzyme production. World J Microbiol Biotechnol 28:1989–1995

    Google Scholar 

  • Bezerra JD, Nascimento CC, Barbosa RN, da Silva DC, Svedese VM, Silva-Nogueira EB, Gomes BS, Paiva LM, Souza-Motta CM (2015) Endophytic fungi from medicinal plant Bauhinia forficata: diversity and biotechnological potential. Braz J Microbiol 46:49–57

    Google Scholar 

  • Bhagobaty R, Joshi S (2009) Promotion of seed germination of Green gram and Chick pea by Penicillium verruculosum RS7PF, a root endophytic fungus of Potentilla fulgens L. Advanced Biotech 8:16–18

    Google Scholar 

  • Bhat M, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnology Adv 15:583–620

    Google Scholar 

  • Bilal L, Asaf S, Hamayun M, Gul H, Iqbal A, Ullah I, Lee I-J, Hussain A (2018) Plant growth promoting endophytic fungi Aspergillus fumigatus TS1 and Fusarium proliferatum BRL1 produce gibberellins and regulates plant endogenous hormones. Symbiosis 97:1–11. https://doi.org/10.1007/s13199-018-0545-4

    Google Scholar 

  • Biswas S, Kundu DK, Mazumdar SP, Saha AR, Majumdar B, Ghorai AK, Ghosh D, Yadav AN, Saxena AK (2018) Study on the activity and diversity of bacteria in a New Gangetic alluvial soil (Eutrocrept) under rice-wheatjute cropping system. Journal of Environmental Biology 39(3):379–386

    Google Scholar 

  • Biz A, Farias FC, Motter FA, de Paula DH, Richard P, Krieger N, Mitchell DA (2014) Pectinase activity determination: an early deceleration in the release of reducing sugars throws a spanner in the works. PLoS One 9:e109529. https://doi.org/10.1371/journal.pone.0109529

    Google Scholar 

  • Bogner CW, Kariuki GM, Elashry A, Sichtermann G, Buch A-K, Mishra B, Thines M, Grundler FM, Schouten A (2016) Fungal root endophytes of tomato from Kenya and their nematode biocontrol potential. Mycol Progress. https://doi.org/10.1007/s11557-016-1169-9

  • Bogner CW, Kamdem RS, Sichtermann G, Matthäus C, Hölscher D, Popp J, Proksch P, Grundler FM, Schouten A (2017) Bioactive secondary metabolites with multiple activities from a fungal endophyte. Microbial Biotechnol 10:175–188

    Google Scholar 

  • Bömke C, Tudzynski B (2009) Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70:1876–1893

    Google Scholar 

  • Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates: an expanded role for laccase in lignin biodegradation. FEBS Lett 267:99–102

    Google Scholar 

  • Braddock RJ (1981) Pectinase treatment of raw orange juice and subsequent quality changes in 60o Brix concentrate. P Fl St Hortic Soc 94:270–273

    Google Scholar 

  • Breen J (1994) Acremonium endophyte interactions with enhanced plant resistance to insects. Annu Rev Entomol 39:401–423

    Google Scholar 

  • Brem D, Leuchtmann A (2001) Epichloë grass endophytes increase herbivore resistance in the woodland grass Brachypodium sylvaticum. Oecologia 126:522–530

    Google Scholar 

  • Butt MS, Tahir-Nadeem M, Ahmad Z, Sultan MT (2008) Xylanases and Their Applications in Baking Industry. Food Technol Biotechnol 46:22–31

    Google Scholar 

  • Butterworth J, Morgan E, Percy G (1972) The structure of azadirachtin; the functional groups. J Chem Soc Perkin Trans 1:2445–2450

    Google Scholar 

  • Cabezas L, Calderon C, Medina LM, Bahamon I, Cardenas M, Bernal AJ, Gonzalez A, Restrepo S (2012) Characterization of cellulases of fungal endophytes isolated from Espeletia spp. J Microbiol 50:1009–1013

    Google Scholar 

  • Cañas AI, Camarero S (2010) Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv 28:694–705

    Google Scholar 

  • Carvalho CR, Gonçalves VN, Pereira CB, Johann S, Galliza IV, Alves TM, Rabello A, Sobral ME, Zani CL, Rosa CA (2012) The diversity, antimicrobial and anticancer activity of endophytic fungi associated with the medicinal plant Stryphnodendron adstringens (Mart.) Coville (Fabaceae) from the Brazilian savannah. Symbiosis 57:95–107

    Google Scholar 

  • Cavalcanti RMF, Ornela P, Jorge JA, Guimarães L (2017) Screening, selection and optimization of the culture conditions for tannase production by endophytic fungi isolated from caatinga. J Appl Biol Biotechnol 5:1–9

    Google Scholar 

  • Chabannes M, Ruel K, Yoshinaga A, Chabbert B, Jauneau A, Joseleau JP, Boudet AM (2001) In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels. Plant J 28:271–282

    Google Scholar 

  • Chadha N, Prasad R, Varma A (2015) Plant promoting activities of fungal endophytes associated with tomato roots from central Himalaya, India and their interaction with Piriformosporaindica. Int J Pharm Bio Sci 6:333–343

    Google Scholar 

  • Chandrappa C, Anitha R, Jyothi P, Rajalakshmi K, Seema Mahammadi H, Govindappa M (2013) Phytochemical analysis and antibacterial activity of Endophytes of Embelia Tsjeriam cottam Linn. Int J Pharma Bio Sci 3:201–203

    Google Scholar 

  • Chaudhri A, Suneetha V (2012) Microbially derived pectinases: a review. IOSR J Pharm Biol Sci 2:1–5

    Google Scholar 

  • Chen XM, Dong HL, Hu KX, Sun ZR, Chen J, Guo SX (2010) Diversity and antimicrobial and plant-growth-promoting activities of endophytic fungi in Dendrobium loddigesii Rolfe. J Plant Growth Regul 29:328–337

    Google Scholar 

  • Chen Z, Song Y, Chen Y, Huang H, Zhang W, Ju J (2012) Cyclic heptapeptides, cordyheptapeptides C–E, from the marine-derived fungus Acremonium persicinum SCSIO 115 and their cytotoxic activities. J Nat Prod 75:1215–1219

    Google Scholar 

  • Chen G-D, Chen Y, Gao H, Shen L-Q, Wu Y, Li XX, Li Y, Guo LD, Cen YZ, Yao X-S (2013) Xanthoquinodins from the endolichenic fungal strain Chaetomium elatum. J Nat Prod 76:702–709

    Google Scholar 

  • Choi W-Y, Rim S-O, Lee J-H, Lee J-M, Lee I-J, Cho K-J, Rhee I-K, Kwon J-B, Kim J-G (2005) Isolation of gibberellins-producing fungi from the root of several Sesamum indicum plants. J Microbiol Biotechnol 15:22–28

    Google Scholar 

  • Chow Y, Ting AS (2015) Endophytic L-asparaginase-producing fungi from plants associated with anticancer properties. J Adv Res 6:869–876

    Google Scholar 

  • Clark R, Lee SH (2016) Anticancer properties of capsaicin against human cancer. Anticancer Res 36:837–843

    Google Scholar 

  • Clay K, Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science 285:1742–1744

    Google Scholar 

  • Colla G, Rouphael Y, Bonini P, Cardarelli M (2015) Coating seeds with endophytic fungi enhances growth, nutrient uptake, yield and grain quality of winter wheat. Int J Plant Prot 9:171–189

    Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Google Scholar 

  • Comby M, Gacoin M, Robineau M, Rabenoelina F, Ptas S, Dupont J, Profizi C, Baillieul F (2017) Screening of wheat endophytes as biological control agents against Fusarium head blight using two different in vitro tests. Microbiol Res 202:11–20

    Google Scholar 

  • Correa A, Pacheco S, Mechaly AE, Obal G, Béhar G, Mouratou B, Oppezzo P, Alzari PM, Pecorari F (2014) Potent and specific inhibition of glycosidases by small artificial binding proteins (Affitins). PLoS One 9:e97438

    Google Scholar 

  • Costa JM, Loper JE (1994) Characterization of siderophore production by the biological control agent Enterobacter cloacae. MPMI 7:440–448

    Google Scholar 

  • Costa-Silva TA, Nogueira MA, Fernandes Souza CR, Oliveira WP, Said S (2011) Lipase production by endophytic fungus Cercospora kikuchii: stability of enzymatic activity after spray drying in the presence of carbohydrates. Drying Technol 29:1112–1119

    Google Scholar 

  • Cui J-L, Guo S-X, Xiao P-G (2011) Antitumor and antimicrobial activities of endophytic fungi from medicinal parts of Aquilaria sinensis. J Zhejiang Univ Sci B 12:385–392

    Google Scholar 

  • Dai C-C, Tian L-S, Zhao Y-T, Chen Y, Xie H (2010) Degradation of phenanthrene by the endophytic fungus Ceratobasidum stevensii found in Bischofia polycarpa. Biodegradation 21:245–255

    Google Scholar 

  • Dastogeer KM, Li H, Sivasithamparam K, Jones MG, Wylie SJ (2018) Fungal endophytes and a virus confer drought tolerance to Nicotiana benthamiana plants through modulating osmolytes, antioxidant enzymes and expression of host drought responsive genes. Environ Exper Bot 149:95–108

    Google Scholar 

  • De Bary A (1866) Morpholodie und Physiologie del Pilze. Flechten und Myxomyceten, Engelmann, Leipzig

    Google Scholar 

  • De Siqueira VM, Conti R, de Araújo JM, Souza-Motta CM (2011) Endophytic fungi from the medicinal plant Lippia sidoides Cham. and their antimicrobial activity. Symbiosis 53:89–95

    Google Scholar 

  • De Souza Leite T, Cnossen-Fassoni A, Pereira OL, Mizubuti ESG, de Araújo EF, de Queiroz MV (2013) Novel and highly diverse fungal endophytes in soybean revealed by the consortium of two different techniques. J Microbiol 51:56–69

    Google Scholar 

  • Del Giudice L, Massardo DR, Pontieri P, Bertea CM, Mombello D, Carata E, Tredici SM, Talà A, Mucciarelli M, Groudeva VI (2008) The microbial community of Vetiver root and its involvement into essential oil biogenesis. Environ Microbiol 10:2824–2841

    Google Scholar 

  • Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot 62:5–16

    Google Scholar 

  • Dhouib A, Hamza M, Zouari H, Mechichi T, Hmidi R, Labat M, Martinez MJ, Sayadi S (2005) Screening for ligninolytic enzyme production by diverse fungi from Tunisia. World J Microbiol Biotechnol 21:1415–1423

    Google Scholar 

  • Ding G, Li Y, Fu S, Liu S, Wei J, Che Y (2008) Ambuic acid and torreyanic acid derivatives from the endolichenic fungus Pestalotiopsis sp. J Nat Prod 72:182–186

    Google Scholar 

  • Dissanayake RK, Ratnaweera PB, Williams DE, Wijayarathne CD, Wijesundera RL, Andersen RJ, de Silva ED (2016) Antimicrobial activities of endophytic fungi of the Sri Lankan aquatic plant Nymphaea nouchali and chaetoglobosin A and C, produced by the endophytic fungus Chaetomium globosum. Mycology 7:1–8

    Google Scholar 

  • Dos Santos Souza B, dos Santos TT (2017) Endophytic fungi in economically important plants: ecological aspects, diversity and potential biotechnological applications. J Bio Food Sci 4:113–126

    Google Scholar 

  • Dos Santos TT, de Souza Leite T, de Queiroz CB, de Araújo EF, Pereira OL, de Queiroz MV (2016) High genetic variability in endophytic fungi from the genus Diaporthe isolated from common bean (Phaseolus vulgaris L.) in Brazil. J App Microbiol 120:388–401

    Google Scholar 

  • Dou Y, Wang X, Jiang D, Wang H, Jiao Y, Lou H, Wang X (2014) Metabolites from Aspergillus versicolor, an endolichenic fungus from the lichen Lobaria retigera. Drug Discov Ther 8:84–88

    Google Scholar 

  • Durand F, Gounel S, Mano N (2013) Purification and characterization of a new laccase from the filamentous fungus Podospora anserina. Prot Expr Purif 88:61–66

    Google Scholar 

  • Dutta S, Mishra A, Kumar BD (2008) Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia. Soil Biol Biochem 40:452–461

    Google Scholar 

  • Elfita E, Muharni M, Munawar M, Legasari L, Darwati D (2011) Antimalarial compounds from endophytic fungi of Brotowali (Tinaspora crispa L). Indones J Chemis 11:53–58

    Google Scholar 

  • El-Zayat S (2008) Preliminary studies on laccase production by Chaetomium globosum an endophytic fungus in Glinus lotoides. Am Eurasian J Agric Environ Sci 3:86–90

    Google Scholar 

  • Erbert C, Lopes AA, Yokoya NS, Furtado NA, Conti R, Pupo MT, Lopes JLC, Debonsi HM (2012) Antibacterial compound from the endophytic fungus Phomopsis longicolla isolated from the tropical red seaweed Bostrychia radicans. Bot Mar 55:435–440

    Google Scholar 

  • Escudero N, Ferreira SR, Lopez-Moya F, Naranjo-Ortiz MA, Marin-Ortiz AI, Thornton CR, Lopez-Llorca LV (2016) Chitosan enhances parasitism of Meloidogyne javanica eggs by the nematophagous fungus Pochonia chlamydosporia. Fungal Biol 120:572–585

    Google Scholar 

  • Evans CS, Dutton MV, Guillén F, Veness RG (1994) Enzymes and small molecular mass agents involved with lignocellulose degradation. FEMS Microbiol Rev 13:235–239

    Google Scholar 

  • Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121–1124

    Google Scholar 

  • Fareed S, Jadoon UN, Ullah I, Ayub M, Jadoon MUR, Bibi Z, Waqas M, Nisa S (2017) Isolation and biological evaluation of endophytic fungus from Ziziphus nummularia. J Entomol Zool Stud 5(3):32–38

    Google Scholar 

  • Fernandes EG, Pereira OL, da Silva CC, Bento CBP, de Queiroz MV (2015) Diversity of endophytic fungi in Glycine max. Microbiol Res 181:84–92

    Google Scholar 

  • Fillat Ú, Martín-Sampedro R, Macaya-Sanz D, Martín JA, Ibarra D, Martínez MJ, Eugenio ME (2016) Screening of eucalyptus wood endophytes for laccase activity. Process Biochem 51:589–598

    Google Scholar 

  • Fisher P, Petrini O (1992) Fungal saprobes and pathogens as endophytes of rice (Oryza sativa L.). New Phytol 120:137–143

    Google Scholar 

  • Fisher P, Graf F, Petrini L, Sutton B, Wookey P (1995) Fungal endophytes of Dryas octopetala from a high arctic polar semidesert and from the Swiss Alps. Mycologia 87:319–323

    Google Scholar 

  • Fouda AH, Hassan SE-D, Eid AM, Ewais EE-D (2015) Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Ann Agric Sci 60:95–104

    Google Scholar 

  • Freeman EM (1904) I.—The seed-fungus of Lolium temulentum, L., the darnel. Phil Trans R Soc Lond B 196:1–27

    Google Scholar 

  • Fröhlich J, Hyde KD (1999) Biodiversity of palm fungi in the tropics: are global fungal diversity estimates realistic? Biodivers Conserv 8:977–1004

    Google Scholar 

  • Fu J, Zhou Y, Li H-F, Ye Y-H, Guo J-H (2011) Antifungal metabolites from Phomopsis sp. By254, an endophytic fungus in Gossypium hirsutum. A J Microbiol Res 5:1231–1236

    Google Scholar 

  • Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11:271–279

    Google Scholar 

  • Gamboa MA, Bayman P (2001) Communities of endophytic fungi in leaves of a tropical timber tree (Guarea guidonia: Meliaceae) 1. Biotropica 33:352–360

    Google Scholar 

  • Gangadevi V, Muthumary J (2008) Taxol, an anticancer drug produced by an endophytic fungus Bartalinia robillardoides Tassi, isolated from a medicinal plant, Aegle marmelos Correa ex Roxb. W J Microbiol Biotechnol 24:717

    Google Scholar 

  • Gao Y, Zhao JT, Zu YG, Fu YJ, Wang W, Luo M, Efferth T (2011) Characterization of five fungal endophytes producing Cajaninstilbene acid isolated from pigeon pea [Cajanus cajan (L.) Millsp.]. PLoS One 6:e27589

    Google Scholar 

  • Gao Y, Zhao J, Zu Y, Fu Y, Liang L, Luo M, Wang W, Efferth T (2012) Antioxidant properties, superoxide dismutase and glutathione reductase activities in HepG2 cells with a fungal endophyte producing apigenin from pigeon pea [Cajanus cajan (L.) Millsp.]. Food Res Int 49:147–152

    Google Scholar 

  • García A, Rhoden SA, Rubin Filho CJ, Nakamura CV, Pamphile JA (2012) Diversity of foliar endophytic fungi from the medicinal plant Sapindus saponaria L. and their localization by scanning electron microscopy. Biol Res 45:139–148

    Google Scholar 

  • Garg G, Singh A, Kaur A, Singh R, Kaur J, Mahajan R (2016) Microbial pectinases: an ecofriendly tool of nature for industries. 3 Biotech 6:47. https://doi.org/10.1007/s13205-016-0371-4

    Google Scholar 

  • Ginalska G, Bancerz R, Korniłłowicz-Kowalska T (2004) A thermostable lipase produced by a newly isolated Geotrichum-like strain, R59. J Ind Microbiol Biotechnol 31:177–182

    Google Scholar 

  • Gond S, Verma V, Kumar A, Kumar V, Kharwar R (2007) Study of endophytic fungal community from different parts of Aegle marmelos Correae (Rutaceae) from Varanasi (India). World J Microbiol Biotechnol 23:1371–1375

    Google Scholar 

  • Gond SK, Mishra A, Sharma VK, Verma SK, Kumar J, Kharwar RN, Kumar A (2012) Diversity and antimicrobial activity of endophytic fungi isolated from Nyctanthes arbor-tristis, a well-known medicinal plant of India. Mycoscience 53:113–121

    Google Scholar 

  • Gong L, Guo S (2009) Endophytic fungi from Dracaena cambodiana and Aquilaria sinensis and their antimicrobial activity. Afr J Biotechnol 8(5):731–736

    Google Scholar 

  • Gontia-Mishra I, Tiwari S (2013) Molecular characterization and comparative phylogenetic analysis of phytases from fungi with their prospective applications. Food Technol Biotechnol 51:313–326

    Google Scholar 

  • Gonzaga L, Costa L, Santos T, Araújo E, Queiroz M (2015) Endophytic fungi from the genus Colletotrichum are abundant in the Phaseolus vulgaris and have high genetic diversity. J Appl Microbiol 118:485–496

    Google Scholar 

  • González MC, Buenrostro-Figueroa J, Durán LR, Zárate P, Rodríguez R, Rodríguez-Jasso RM, Ruiz HA, Aguilar CN (2017) Tannases. In: Current developments in biotechnology and bioengineering. Elsevier, Amsterdam/Boston, pp 471–489

    Google Scholar 

  • Gopinath SC, Anbu P, Lakshmipriya T, Hilda A (2013) Strategies to characterize fungal lipases for applications in medicine and dairy industry. Biomed Res Int. https://doi.org/10.1155/2013/154549

  • Govindachari T, Viswanathan N (1972) 9-Methoxycamptothecin. A new alkaloid from Mappia foetida Miers. Ind J Chem 10:453–454

    Google Scholar 

  • Goyal S, Ramawat K, Mérillon J (2016) Different shades of fungal metabolites: an overview. In: Merillon JM, Ramawat K (eds) Fungal metabolites. Reference series in phytochemistry. Springer, Cham, pp 1–29

    Google Scholar 

  • Gray J, Bemiller J (2003) Bread staling: molecular basis and control. Compr Rev Food Sci Food Saf 2:1–21

    Google Scholar 

  • Guillén F, Martınez Ma J, Muñoz C, Martınez AT (1997) Quinone redox cycling in the ligninolytic fungus Pleurotus eryngii leading to extracellular production of superoxide anion radical. Arch Biochem Biophys 339:190–199

    Google Scholar 

  • Guillén F, Martínez MJ, Gutiérrez A, Del Rio J (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195–204

    Google Scholar 

  • Guo B, Li H, Zhang L (1998) Isolation of a fungus producing vinblastine. J Yunnan Uni (Nat Sci) 20:214–215

    Google Scholar 

  • Guo B, Dai J-R, Ng S, Huang Y, Leong C, Ong W, Carté BK (2000) Cytonic acids A and B: novel tridepside inhibitors of hCMV protease from the endophytic fungus Cytonaema species. J Nat Prod 63:602–604

    Google Scholar 

  • Guo B, Wang Y, Sun X, Tang K (2008) Bioactive natural products from endophytes: a review. App Biochem Microbiol 44:136–142

    Google Scholar 

  • Gutierrez A, Caramelo L, Prieto A, Martínez MJ, Martinez AT (1994) Anisaldehyde production and aryl-alcohol oxidase and dehydrogenase activities in ligninolytic fungi of the genus Pleurotus. App Environ Microbiol 60:1783–1788

    Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee W, Kloepper J (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Google Scholar 

  • Hamayun M, Khan SA, Ahmad N, Tang D-S, Kang S-M, Na C-I, Sohn E-Y, Hwang Y-H, Shin D-H, Lee B-H (2009a) Cladosporium sphaerospermum as a new plant growth-promoting endophyte from the roots of Glycine max (L.) Merr. World J Microbiol Biotechnol 25:627–632

    Google Scholar 

  • Hamayun M, Khan SA, Khan AL, Rehman G, Sohn E-Y, Shah AA, Kim S-K, Joo G-J, Lee I-J (2009b) Phoma herbarum as a new gibberellin-producing and plant growth-promoting fungus. J Microbiol Biotechnol 19:1244–1249

    Google Scholar 

  • Hamayun M, Khan SA, Khan MA, Khan AL, Kang S-M, Kim S-K, Joo G-J, Lee I-J (2009c) Gibberellin production by pure cultures of a new strain of Aspergillus fumigatus. World J Microbiol Biotechnol 25:1785–1792

    Google Scholar 

  • Hamayun M, Khan SA, Khan AL, Rehman G, Kim Y-H, Iqbal I, Hussain J, Sohn E-Y, Lee I-J (2010) Gibberellin production and plant growth promotion from pure cultures of Cladosporium sp. MH-6 isolated from cucumber (Cucumis sativus L.). Mycologia 102:989–995

    Google Scholar 

  • Hamayun M, Hussain A, Khan SA, Kim H-Y, Khan AL, Waqas M, Irshad M, Iqbal A, Rehman G, Jan S (2017) Gibberellins producing endophytic fungus Porostereum spadiceum AGH786 rescues growth of salt affected soybean. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00686

  • Hanada RE, Pomella AWV, Costa HS, Bezerra JL, Loguercio LL, Pereira JO (2010) Endophytic fungal diversity in Theobroma cacao (cacao) and T. grandiflorum (cupuaçu) trees and their potential for growth promotion and biocontrol of black-pod disease. Fungal Biol 114:901–910

    Google Scholar 

  • Harish S, Kavino M, Kumar N, Balasubramanian P, Samiyappan R (2009) Induction of defense-related proteins by mixtures of plant growth promoting endophytic bacteria against Banana bunchy top virus. Biol Control 51:16–25

    Google Scholar 

  • Harnpicharnchai P, Champreda V, Sornlake W, Eurwilaichitr L (2009) A thermotolerant β-glucosidase isolated from an endophytic fungi, Periconia sp., with a possible use for biomass conversion to sugars. Prot Expr Purif 67:61–69

    Google Scholar 

  • Haros M, Rosell CM, Benedito C (2001) Fungal phytase as a potential breadmaking additive. Eur Food Res Technol 213:317–322

    Google Scholar 

  • Harper JK, Arif AM, Ford EJ, Strobel GA, Porco JA, Tomer DP, Oneill KL, Heider EM, Grant DM (2003) Pestacin: a 1, 3-dihydro isobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron 59:2471–2476

    Google Scholar 

  • Harris AD, Ramalingam C (2010) Xylanases and its application in food industry: a review. J Exp Sci 1:1–11

    Google Scholar 

  • Hasan H (2002) Gibberellin and auxin-indole production by plant root-fungi and their biosynthesis under salinity-calcium interaction. Acta Microbiol Immunol Hung 49:105–118

    Google Scholar 

  • Hassan SED, Liu A, Bittman S, Forge TA, Hunt DE, Hijri M, St-Arnaud M (2013) Impact of 12-year field treatments with organic and inorganic fertilizers on crop productivity and mycorrhizal community structure. Biol Fert Soils 49:1109–1121

    Google Scholar 

  • Hazalin NAMN, Ramasamy K, Lim SM, Cole AL, Majeed ABA (2012) Induction of apoptosis against cancer cell lines by four ascomycetes (endophytes) from Malaysian rainforest. Phytomedicine 19:609–617

    Google Scholar 

  • Heidarizadeh M, Rezaei PF, Shahabivand S (2018) Novel pectinase from Piriformospora indica, optimization of growth parameters and enzyme production in submerged culture condition. Turk J Biochem 43:289–295

    Google Scholar 

  • Higuchi T (2012) Biochemistry and molecular biology of wood. Springer, London

    Google Scholar 

  • Hoffman AM, Mayer SG, Strobel GA, Hess WM, Sovocool GW, Grange AH, Harper JK, Arif AM, Grant DM, Kelley-Swift EG (2008) Purification, identification and activity of phomodione, a furandione from an endophytic Phoma species. Phytochemistry 69:1049–1056

    Google Scholar 

  • Huang H, She Z, Lin Y, Vrijmoed L, Lin W (2007) Cyclic peptides from an endophytic fungus obtained from a mangrove leaf (Kandelia candel). J Nat Prod 70:1696–1699

    Google Scholar 

  • Huang W, Cai Y, Hyde K, Corke H, Sun M (2008) Biodiversity of endophytic fungi associated with 29 traditional Chinese medicinal plants. Fungal Divers 33:61–75

    Google Scholar 

  • Huang W, Cai Y, Surveswaran S, Hyde K, Corke H, Sun M (2009) Molecular phylogenetic identification of endophytic fungi isolated from three Artemisia species. Fungal Divers 36:69–88

    Google Scholar 

  • Huang Y-L, Zimmerman NB, Arnold AE (2018) Observations on the early establishment of foliar endophytic fungi in leaf discs and living leaves of a model woody angiosperm, Populus trichocarpa (Salicaceae). J Fungi (Basel, Switzerland). https://doi.org/10.3390/jof4020058

  • Hung PQ, Kumar SM, Govindsamy V, Annapurna K (2007) Isolation and characterization of endophytic bacteria from wild and cultivated soybean varieties. Biol Fert Soils 44:155–162

    Google Scholar 

  • Impullitti A, Malvick D (2013) Fungal endophyte diversity in soybean. J Appl Microbiol 114:1500–1506

    Google Scholar 

  • Jacobsen T, Olsen J, Allermann K (1990) Substrate specificity of Geotrichum candidum lipase preparations. Biotechnol Lett 12:121–126

    Google Scholar 

  • Jalgaonwala RE, Mahajan RT (2014) Production of anticancer enzyme asparaginase from endophytic Eurotium sp. isolated from rhizomes of Curcuma longa. Euro J Exp Biol 4:36–43

    Google Scholar 

  • Jalgaonwala RE, Mohite BV, Mahajan RT (2017) A review: natural products from plant associated endophytic fungi. J Microbiol Biotechnol Research 1:21–32

    Google Scholar 

  • Jarvis AP, Morgan ED, Van Der Esch SA, Vitali F, Ley SV, Pape A (1997) Identification of azadirachtin in tissue-cultured cells of neem (Azadirachta indica). Nat Prod Lett 10:95–98

    Google Scholar 

  • Jennifer Mordue A, Simmonds MS, Ley SV, Blaney WM, Mordue W, Nasiruddin M, Nisbet AJ (1998) Actions of azadirachtin, a plant allelochemical, against insects. Pes Sci 54:277–284

    Google Scholar 

  • Jerry B (1994) A role of endophytic fungi in regulating nutrients and energy in plants within a desert ecosystem. International symposium and workshop on desertification in developed countries. Accessed on 2011/10/25

    Google Scholar 

  • Jha PN, Gupta G, Jha P, Mehrotra R (2013) Association of rhizospheric/endophytic bacteria with plants: a potential gateway to sustainable agriculture. Greener J Agr Sci 3:73–84

    Google Scholar 

  • Jin H, Yan Z, Liu Q, Yang X, Chen J, Qin B (2013) Diversity and dynamics of fungal endophytes in leaves, stems and roots of Stellera chamaejasme L. in northwestern China. Antonie Van Leeuwenhoek 104:949–963

    Google Scholar 

  • Kalyanasundaram I, Nagamuthu J, Srinivasan B, Pachayappan A, Muthukumarasamy S (2015) Production, purification and characterisation of extracellular L-asparaginase from salt marsh fungal endophytes. World J Pharm Sci 4:663–677

    Google Scholar 

  • Kaul S, Ahmed M, Zargar K, Sharma P, Dhar MK (2013) Prospecting endophytic fungal assemblage of Digitalis lanata Ehrh. (foxglove) as a novel source of digoxin: a cardiac glycoside. 3 Biotech 3:335–677

    Google Scholar 

  • Kaur R, Saxena A, Sangwan P, Yadav AN, Kumar V, Dhaliwal HS (2017) Production and characterization of a neutral phytase of Penicillium oxalicum EUFR-3 isolated from Himalayan region. Nus Biosci 9:68–76

    Google Scholar 

  • Kawaide H (2006) Biochemical and molecular analyses of gibberellin biosynthesis in fungi. Biosci Biotechnol Biochem 70:583–590

    Google Scholar 

  • Kedar A, Rathod D, Yadav A, Agarkar G, Rai M (2014) Endophytic Phoma sp. isolated from medicinal plants promote the growth of Zea mays. Nus Biosci 6:132–139

    Google Scholar 

  • Keyser CA, Jensen B, Meyling NV (2016) Dual effects of Metarhizium spp. and Clonostachys rosea against an insect and a seed-borne pathogen in wheat. Pest Manag Sci 72:517–526

    Google Scholar 

  • Khan SA, Hamayun M, Yoon H, Kim H-Y, Suh S-J, Hwang S-K, Kim J-M, Lee I-J, Choo Y-S, Yoon U-H (2008) Plant growth promotion and Penicillium citrinum. BMC Microbiol. https://doi.org/10.1186/1471-2180-8-231

  • Khan SA, Hamayun M, Kim H-Y, Yoon H-J, Lee I-J, Kim J-G (2009a) Gibberellin production and plant growth promotion by a newly isolated strain of Gliomastix murorum. W J Microbiol Biotechnol 25:829–833

    Google Scholar 

  • Khan SA, Hamayun M, Kim H-Y, Yoon H-J, Seo J-C, Choo Y-S, Lee I-J, Rhee I-K, Kim J-G (2009b) A new strain of Arthrinium phaeospermum isolated from Carex kobomugi Ohwi is capable of gibberellin production. Biotechnol Lett 31:283–287

    Google Scholar 

  • Khan AL, Hamayun M, Ahmad N, Waqas M, Kang SM, Kim YH, Lee IJ (2011a) Exophiala sp. LHL08 reprograms Cucumis sativus to higher growth under abiotic stresses. Physiol Plant 143:329–343

    Google Scholar 

  • Khan AL, Hamayun M, Kim Y-H, Kang S-M, Lee I-J (2011b) Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiol Biochem 49:852–861

    Google Scholar 

  • Khan AL, Hamayun M, Hussain J, Kang S-M, Lee I-J (2012a) The newly isolated endophytic fungus Paraconiothyrium sp. LK1 produces ascotoxin. Molecules 17:1103–1112

    Google Scholar 

  • Khan AL, Hamayun M, Khan SA, Kang S-M, Shinwari ZK, Kamran M, ur Rehman S, Kim JG, Lee IJ (2012b) Pure culture of Metarhizium anisopliae LHL07 reprograms soybean to higher growth and mitigates salt stress. World J Microbiol Biotechnol 28:1483–1494

    Google Scholar 

  • Khan AL, Hussain J, Al-Harrasi A, Al-Rawahi A, Lee I-J (2015) Endophytic fungi: resource for gibberellins and crop abiotic stress resistance. Crit Rev Biotechnol 35:62–74

    Google Scholar 

  • Khan AL, Shahzad R, Al-Harrasi A, Lee IJ (2017) Endophytic microbes: a resource for producing extracellular enzymes. In: Maheshwari D, Annapurna K (eds) Endophytes: crop productivity and protection. Sustainable development and biodiversity, vol 16. Springer, Cham

    Google Scholar 

  • Kharwar RN, Verma VC, Kumar A, Gond SK, Harper JK, Hess WM, Lobkovosky E, Ma C, Ren Y, Strobel GA (2009) Javanicin, an antibacterial naphthaquinone from an endophytic fungus of neem, Chloridium sp. Curr Microbiol 58:233–238

    Google Scholar 

  • Kharwar R, Maurya A, Verma V, Kumar A, Gond S, Mishra A (2012) Diversity and antimicrobial activity of endophytic fungal community isolated from medicinal plant Cinnamomum camphora. Proc Natl Acad Sci India Section B Biol Sci 82:557–565

    Google Scholar 

  • Khiralla A, Spina R, Yagi S, Mohamed I, Laurain-Mattar D (2017) Endophytic fungi: occurrence, classification, function and natural products. In: Hughes E (ed) Endophytic fungi: diversity, characterization and biocontrol. Nova Science Publishers, New York, pp 1–38

    Google Scholar 

  • Kim S, Shin D-S, Lee T, Oh K-B (2004) Periconicins, two new fusicoccane diterpenes produced by an endophytic fungus Periconia sp. with antibacterial activity. J Nat Prod 67:448–450

    Google Scholar 

  • Kim JS, Gao J, Daniel G (2015) Cytochemical and immunocytochemical characterization of wood decayed by the white rot fungus Pycnoporus sanguineus I. preferential lignin degradation prior to hemicelluloses in Norway spruce wood. Int Biodeterior Biodegradation 105:30–40

    Google Scholar 

  • Kirti S, Reddy M (2013) Characterization of thermostable and alkalophilic lipase enzyme from endophytic fungus Leptosphaerulina sp. Ph.D. Thesis. http://hdl.handle.net/10266/2541

  • Kjer J, Wray V, Edrada-Ebel R, Ebel R, Pretsch A, Lin W, Proksch P (2009) Xanalteric acids I and II and related phenolic compounds from an endophytic Alternaria sp. isolated from the mangrove plant Sonneratia alba. J Nat Prod 72:2053–2057

    Google Scholar 

  • Klenk A, Bokel M, Kraus W (1986) 3-Tigloylazadirachtol (tigloyl= 2-methylcrotonoyl), an insect growth regulating constituent of Azadirachta indica. J Chem Soc Chem Commun 0:523–524

    Google Scholar 

  • Köhl J, Lombaers C, Moretti A, Bandyopadhyay R, Somma S, Kastelein P (2015) Analysis of microbial taxonomical groups present in maize stalks suppressive to colonization by toxigenic Fusarium spp.: a strategy for the identification of potential antagonists. Biol Control 83:20–28

    Google Scholar 

  • Koukol O, Kolařík M, Kolářová Z, Baldrian P (2012) Diversity of foliar endophytes in wind-fallen Picea abies trees. Fungal Divers 54:69–77

    Google Scholar 

  • Kraus W, Bokel M, Klenk A, Pöhn H (1985) The structure of azadirachtin and 22, 23-dihydro-23β-methoxyazadirachtin. Tetrahedron Lett 26:6435–6438

    Google Scholar 

  • Krishnamurthy YL, Naik BS (2017) Endophytic fungi bioremediation. In: Maheshwari D, Annapurna K (eds) Endophytes: crop productivity and protection. Sustainable development and biodiversity, vol 16. Springer, Cham

    Google Scholar 

  • Kudalkar P, Strobel G, Riyaz-Ul-Hassan S, Geary B, Sears J (2012) Muscodor sutura, a novel endophytic fungus with volatile antibiotic activities. Mycoscience 53:319–325

    Google Scholar 

  • Kudanga T, Mwenje E (2005) Extracellular cellulase production by tropical isolates of Aureobasidium pullulans. Can J Microbiol 51:773–776

    Google Scholar 

  • Kumar S, Kaushik N (2013) Endophytic fungi isolated from oil-seed crop Jatropha curcas produces oil and exhibit antifungal activity. PLoS One 8:e56202

    Google Scholar 

  • Kumar A, Patil D, Rajamohanan PR, Ahmad A (2013) Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS One 8:e71805

    Google Scholar 

  • Kumar M, Yadav AN, Tiwari R, Prasanna R, Saxena AK (2014) Evaluating the diversity of culturable thermotolerant bacteria from four hot springs of India. J Biodivers Biopros Dev 1:1–9

    Google Scholar 

  • Kumar V, Yadav AN, Saxena A, Sangwan P, Dhaliwal HS (2016) Unravelling rhizospheric diversity and potential of phytase producing microbes. SM J Biol 2:1009

    Google Scholar 

  • Kumar K, Yadav AN, Kumar V, Vyas P, Dhaliwal HS (2017a) Food waste: a potential bioresource for extraction of nutraceuticals and bioactive compounds. Biores Bioprocess. https://doi.org/10.1186/s40643-017-0148-6

  • Kumar V, Yadav AN, Verema P, Sangwan P, Abhishake S, Singh B (2017b) β-Propeller phytases: diversity, catalytic attributes, current developments and potential biotechnological applications. Int J Biol Macromol 98:595–609

    Google Scholar 

  • Kumara PM, Shweta S, Vasanthakumari M, Sachin N, Manjunatha B, Jadhav SS, Ravikanth G, Ganeshaiah K, Shaanker RU (2014) Endophytes and plant secondary metabolite synthesis: molecular and evolutionary perspective. In: Advances in endophytic research. Springer, New Delhi, pp 177–190

    Google Scholar 

  • Kunamneni A, Camarero S, García-Burgos C, Plou FJ, Ballesteros A, Alcalde M (2008) Engineering and applications of fungal laccases for organic synthesis. Microbial Cell Factories. https://doi.org/10.1186/1475-2859-7-32

  • Kurose D, Furuya N, Tsuchiya K, Tsushima S, Evans HC (2012) Endophytic fungi associated with Fallopia japonica (Polygonaceae) in Japan and their interactions with Puccinia polygoni-amphibii var. tovariae, a candidate for classical biological control. Fungal Biol 116:785–791

    Google Scholar 

  • Kusari S, Spiteller M (2011) Are we ready for industrial production of bioactive plant secondary metabolites utilizing endophytes? Nat Prod Rep 28:1203–1207

    Google Scholar 

  • Kusari S, Spiteller M (2012) Metabolomics of endophytic fungi producing associated plant secondary metabolites: progress, challenges and opportunities. In: Roessner U (ed) Metabolomics. InTech, Rijeka, pp 241–66

    Google Scholar 

  • Kusari S, Lamshöft M, Spiteller M (2009) Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J App Microbiol 107:1019–1030

    Google Scholar 

  • Kusari S, Zuhlke S, Spiteller M (2011) Effect of artificial reconstitution of the interaction between the plant Camptotheca acuminata and the fungal endophyte Fusarium solani on camptothecin biosynthesis. J Nat Prod 74:764–775

    Google Scholar 

  • Kusari S, Verma VC, Lamshoeft M, Spiteller M (2012) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28:1287–1294

    Google Scholar 

  • Kusari P, Kusari S, Spiteller M, Kayser O (2013a) Endophytic fungi harbored in Cannabis sativa L.:diversity and potential as biocontrol agents against host plant-specific phytopathogens. Fungal Diversity 60:137–151

    Google Scholar 

  • Kusari S, Pandey SP, Spiteller M (2013b) Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. Phytochemistry 91:81–87

    Google Scholar 

  • Kusari S, Singh S, Jayabaskaran C (2014) Rethinking production of Taxol®(paclitaxel) using endophyte biotechnology. Trends Biotechnol 32:304–311

    Google Scholar 

  • Larran S, Monaco C, Alippi H (2001) Endophytic fungi in leaves of Lycopersicon esculentum Mill. World J Microbiol Biotechnol 17:181–184

    Google Scholar 

  • Larran S, Perello A, Simon M, Moreno V (2002) Isolation and analysis of endophytic microorganisms in wheat (Triticum aestivum L.) leaves. World J Microbiol Biotechnol 18:683–686

    Google Scholar 

  • Larran S, Perelló A, Simón MR, Moreno V (2007) The endophytic fungi from wheat (Triticum aestivum L.). World J Microbiol Biotechnol 23:565–572

    Google Scholar 

  • Larran S, Siurana MPS, Caselles JR, Simón MR, Perelló A (2018) Fusarium sudanense, endophytic fungus causing typical symptoms of seedling blight and seed rot on wheat. J King Saud Uni-Sci. https://doi.org/10.1016/j.jksus.2018.07.005

  • Lee JC, Lobkovsky E, Pliam NB, Strobel G, Clardy J (1995) Subglutinols A and B: immunosuppressive compounds from the endophytic fungus Fusarium subglutinans. J Org Chem 60:7076–7077

    Google Scholar 

  • Lee JC, Strobel GA, Lobkovsky E, Clardy J (1996) Torreyanic acid: a selectively cytotoxic quinone dimer from the endophytic fungus Pestalotiopsis microspora. J Org Chem 61:3232–3233

    Google Scholar 

  • Ley S, Denholm A, Wood A (1993) The chemistry of azadirachtin. Nat Prod Rep 10:109–157

    Google Scholar 

  • Li JY, Strobel GA (2001) Jesterone and hydroxy-jesterone antioomycete cyclohexenone epoxides from the endophytic fungus Pestalotiopsis jesteri. Phytochemistry 57:261–265

    Google Scholar 

  • Li J, Harper JK, Grant DM, Tombe BO, Bashyal B, Hess W, Strobel GA (2001) Ambuic acid, a highly functionalized cyclohexenone with antifungal activity from Pestalotiopsis spp. and Monochaetia sp. Phytochemistry 56:463–468

    Google Scholar 

  • Li GH, Yu ZF, Li X, Wang XB, Zheng LJ, Zhang KQ (2007a) Nematicidal metabolites produced by the endophytic fungus Geotrichum sp. AL4. Chem Biodivers 4:1520–1524

    Google Scholar 

  • Li WC, Zhou J, Guo SY, Guo LD (2007b) Endophytic fungi associated with lichens in Baihua mountain of Beijing, China. Fungal Divers 25:69–80

    Google Scholar 

  • Li M, Wu Y, Jiang F, Yu X, Tang K, Miao Z (2009) Isolation, identification and anticancer activity of an endophytic fungi from Juglans mandshurica. Zhongguo Zhong Yao Za Zhi 34:1623–1627

    Google Scholar 

  • Li H-Q, Li X-J, Wang Y-L, Zhang Q, Zhang A-L, Gao J-M, Zhang X-C (2011) Antifungal metabolites from Chaetomium globosum, an endophytic fungus in Ginkgo biloba. Biochem Sys Eco 39:876–879

    Google Scholar 

  • Li G, Wang H, Zhu R, Sun L, Wang L, Li M, Li Y, Liu Y, Zhao Z, Lou H (2012a) Phaeosphaerins A–F, cytotoxic perylenequinones from an endolichenic fungus, Phaeosphaeria sp. J Nat Prod 75:142–147

    Google Scholar 

  • Li H-Y, Wei D-Q, Shen M, Zhou Z-P (2012b) Endophytes and their role in phytoremediation. Fungal Divers 54:11–18

    Google Scholar 

  • Li G, Kusari S, Lamshöft M, Schüffler A, Laatsch H, Spiteller M (2014) Antibacterial secondary metabolites from an endophytic fungus, Eupenicillium sp. LG41. J Nat Prod 77:2335–2341

    Google Scholar 

  • Li Y, Yang J, Zhou X, Zhao W, Jian Z (2015) Isolation and identification of a 10-deacetyl baccatin-III-producing endophyte from Taxus wallichiana. App Biochem Biotechnol 175:2224–2231

    Google Scholar 

  • Lim PE, Mak K, Mohamed N, Noor AM (2003) Removal and speciation of heavy metals along the treatment path of wastewater in subsurface-flow constructed wetlands. Wat Sci Technol 48:307–313

    Google Scholar 

  • Lin Z-J, Lu Z-Y, Zhu T-J, Fang Y-C, Gu Q-Q, Zhu W-M (2008a) Penicillenols from Penicillium sp. GQ-7, an endophytic fungus associated with Aegiceras corniculatum. Chem Pharmaceu Bull 56:217–221

    Google Scholar 

  • Lin Z, Zhu T, Fang Y, Gu Q, Zhu W (2008b) Polyketides from Penicillium sp. JP-1, an endophytic fungus associated with the mangrove plant Aegiceras corniculatum. Phytochemistry 69:1273–1278

    Google Scholar 

  • Liu Y, Yang Q, Xia G, Huang H, Li H, Ma L, Lu Y, He L, Xia X, She Z (2015) Polyketides with α-glucosidase inhibitory activity from a mangrove endophytic fungus, Penicillium sp. HN29-3B1. J Nat Prod 78:1816–1822

    Google Scholar 

  • Liu Y, Nan L, Liu J, Yan H, Zhang D, Han X (2016) Isolation and identification of resveratrol-producing endophytes from wine grape Cabernet Sauvignon. SpringerPlus 5:1–13

    Google Scholar 

  • Maheshwari DK (2011) Bacteria in agrobiology: plant growth responses. Springer, Berlin

    Google Scholar 

  • Maheswari S, Rajagopal K (2013) Biodiversity of endophytic fungi in Kigelia pinnata during two different seasons. Curr Sci 104:515–518

    Google Scholar 

  • Makky EA, Yusoff MM (2015) Bioeconomy: pectinases purification and application of fermented waste from Thermomyces lanuginosus. J Med Bioeng 4(1):76–80

    Google Scholar 

  • Malfanova N, Kamilova F, Validov S, Shcherbakov A, Chebotar V, Tikhonovich I, Lugtenberg B (2011) Characterization of Bacillus subtilis HC8, a novel plant-beneficial endophytic strain from giant hogweed. Microbial Biotechnol 4:523–532

    Google Scholar 

  • Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278

    Google Scholar 

  • Mandels M (1985) Applications of cellulases. Portland Press Limited, Biochem Soc Trans 13:414–415. https://doi.org/10.1042/bst0130414

    Google Scholar 

  • Marcenaro D, Valkonen JP (2016) Seedborne pathogenic fungi in common bean (Phaseolus vulgaris cv. INTA Rojo) in Nicaragua. PLoS One 11:e0168662

    Google Scholar 

  • Maria G, Sridhar K, Raviraja N (2005) Antimicrobial and enzyme activity of mangrove endophytic fungi of southwest coast of India. J Agri Technol 1:67–80

    Google Scholar 

  • Marinho AM, Rodrigues-Filho E, Moitinho MLR, Santos LS (2005) Biologically active polyketides produced by Penicillium janthinellum isolated as an endophytic fungus from fruits of Melia azedarach. J Braz Chem Soc 16:280–283

    Google Scholar 

  • Marlida Y, Delfita R, Gusmanizar N, Ciptaan G (2010) Identification characterization and production of phytase from endophytic fungi. World Acad Sci Eng Technol 65:1043–1046

    Google Scholar 

  • Marques NP, de Cassia Pereira J, Gomes E, da Silva R, Araújo AR, Ferreira H, Rodrigues A, Dussán KJ, Bocchini DA (2018) Cellulases and xylanases production by endophytic fungi by solid state fermentation using lignocellulosic substrates and enzymatic saccharification of pretreated sugarcane bagasse. Ind Crop Prod 122:66–75

    Google Scholar 

  • Martin-Sampedro R, Miranda J, Villar JC, Eugenio ME (2013) Laccase from Trametes sp. I-62: production, characterization, and application as a new laccase for eucalyptus globulus kraft pulp biobleaching. Ind Eng Chem Res 52:15533–15540

    Google Scholar 

  • Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:551–565

    Google Scholar 

  • Mayerhofer MS, Fraser E, Kernaghan G (2015) Acid protease production in fungal root endophytes. Mycologia 107:1–11

    Google Scholar 

  • Mehdipour-Moghaddam M, Emtiazi G, Bouzari M, Mostajeran A, Salehi Z (2010) Novel phytase and cellulase activities in endophytic Azospirilla. W Appl Sci J 10:1129–1135

    Google Scholar 

  • Mercado-Blanco J, Alós E, Rey MD, Prieto P (2016) Pseudomonas fluorescens PICF7 displays an endophytic lifestyle in cultivated cereals and enhances yield in barley. FEMS Microbiol 92(8):fiw092. https://doi.org/10.1093/femsec/fiw092

    Google Scholar 

  • Mishra A, Gond SK, Kumar A, Sharma VK, Verma SK, Kharwar RN, Sieber TN (2012) Season and tissue type affect fungal endophyte communities of the Indian medicinal plant Tinospora cordifolia more strongly than geographic location. Microbial Ecol 64:388–398

    Google Scholar 

  • Mitchell DB, Vogel K, Weimann BJ, Pasamontes L, van Loon AP (1997) The phytase subfamily of histidine acid phosphatases: isolation of genes for two novel phytases from the fungi Aspergillus terreus and Myceliophthora thermophila. Microbiology 143:245–252

    Google Scholar 

  • Mohali S, Burgess T, Wingfield M (2005) Diversity and host association of the tropical tree endophyte Lasiodiplodia theobromae revealed using simple sequence repeat markers. Forest Pathol 35:385–396

    Google Scholar 

  • Mucciarelli M, Camusso W, Maffei M, Panicco P, Bicchi C (2007) Volatile terpenoids of endophyte-free and infected peppermint (Mentha piperita L.): chemical partitioning of a symbiosis. Microbial Ecol. https://doi.org/10.1007/s00248-007-9227-0

  • Muthezhilan R, Vinoth S, Gopi K, JaffarHussain A (2014) Dye degrading potential of immobilized laccase from endophytic fungi of coastal sand dune plants. Int J Chem Tech Res 6:4154–4160

    Google Scholar 

  • Naik BS, Krishnamurthy Y (2010) Endophytes: the real untapped high energy biofuel resource. Curr Sci 98:883

    Google Scholar 

  • Naik BS, Shashikala J, Krishnamurthy Y (2009) Study on the diversity of endophytic communities from rice (Oryza sativa L.) and their antagonistic activities in vitro. Microbiol Res 164:290–296

    Google Scholar 

  • Narayan OP, Verma N, Singh AK, Oelmüller R, Kumar M, Prasad D, Kapoor R, Dua M, Johri AK (2017) Antioxidant enzymes in chickpea colonized by Piriformospora indica participate in defense against the pathogen Botrytis cinerea. Scientific Rep 7(1):13553

    Google Scholar 

  • Nascimento T, Oki Y, Lima D, Almeida-Cortez J, Fernandes GW, Souza-Motta C (2015) Biodiversity of endophytic fungi in different leaf ages of Calotropis procera and their antimicrobial activity. Fungal Ecol 14:79–86

    Google Scholar 

  • Nassar AH, El-Tarabily KA, Sivasithamparam K (2005) Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays L.) roots. Biol Fert Soils 42:97–108

    Google Scholar 

  • Nayini N (1984) The phytase of yeast. Lebens Wiss Technol 17:24–26

    Google Scholar 

  • Ngamau C, Matiru V, Tani A, Muthuri C (2014) Potential use of endophytic bacteria as biofertilizer for sustainable banana (Musa spp.) Production. African J Hortic Sci 8(1):1–11

    Google Scholar 

  • Nicoletti R, Fiorentino A (2015) Plant bioactive metabolites and drugs produced by endophytic fungi of Spermatophyta. Agriculture 5:918–970

    Google Scholar 

  • Nisbet AJ (2000) Azadirachtin from the neem tree Azadirachta indica: its action against insects. An Soc Entomol Bras 29:615–632

    Google Scholar 

  • Nuyens F, Verachtert H, Michiels C (2001) Evaluation of a recombinant Saccharomyces cerevisiae strain secreting a Bacillus pumilus endo-beta-xylanase for use in bread-making. In: Meeting of the Benelux Yeast Research Groups, Leuven, Belgium

    Google Scholar 

  • Nygren CM, Edqvist J, Elfstrand M, Heller G, Taylor AF (2007) Detection of extracellular protease activity in different species and genera of ectomycorrhizal fungi. Mycorrhiza 17:241–248

    Google Scholar 

  • Ofek-Lalzar M, Gur Y, Ben-Moshe S, Sharon O, Kosman E, Mochli E, Sharon A (2016) Diversity of fungal endophytes in recent and ancient wheat ancestors Triticum dicoccoides and Aegilops sharonensis. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiw152

  • Ondeyka JG, Helms GL, Hensens OD, Goetz MA, Zink DL, Tsipouras A, Shoop WL, Slayton L, Dombrowski AW, Polishook JD (1997) Nodulisporic acid A, a novel and potent insecticide from a Nodulisporium sp. Isolation, structure determination, and chemical transformations. J Am Chem Soc 119:8809–8816

    Google Scholar 

  • Onofre SB, Mattiello SP, da Silva GC, Groth D, Malagi I (2013) Production of cellulases by the endophytic fungus Fusarium oxysporum. J Microbiol Res 3:131–134

    Google Scholar 

  • Orlandelli R, Alberto R, Rubin Filho C, Pamphile J (2012) Diversity of endophytic fungal community associated with Piper hispidum (Piperaceae) leaves. Genet Mol Res 11:1575–1585

    Google Scholar 

  • Oses R, Valenzuela S, Freer J, Baeza J, Rodríguez J (2006) Evaluation of fungal endophytes for lignocellulolytic enzyme production and wood biodegradation. Int Biodeterior Biodegradation 57:129–135

    Google Scholar 

  • Pan JJ, Baumgarten AM, May G (2008) Effects of host plant environment and Ustilago maydis infection on the fungal endophyte community of maize (Zea mays). New Phytol 178:147–156

    Google Scholar 

  • Pancher M, Ceol M, Corneo PE, Longa CMO, Yousaf S, Pertot I, Campisano A (2012) Fungal endophytic communities in grapevines (Vitis vinifera L.) respond to crop management. App Environ Microbiol. https://doi.org/10.1128/AEM.07655-11

  • Panjiar N, Mishra S, Yadav AN, Verma P (2017) Functional foods from cyanobacteria: an emerging source for functional food products of pharmaceutical importance. In: Gupta VK, Treichel H, Shapaval VO, Oliveira LA, Tuohy MG (eds) Microbial functional foods and nutraceuticals. Wiley, Hoboken, pp 21–37. https://doi.org/10.1002/9781119048961.ch2

    Google Scholar 

  • Panuthai T, Sihanonth P, Piapukiew J, Sooksai S, Sangvanich P, Karnchanatat A (2012) An extracellular lipase from the endophytic fungi Fusarium oxysporum isolated from the Thai medicinal plant, Croton oblongifolius Roxb. Afr J Microbiol Res 6:2622–2638

    Google Scholar 

  • Parsa S, García-Lemos AM, Castillo K, Ortiz V, López-Lavalle LAB, Braun J, Vega FE (2016) Fungal endophytes in germinated seeds of the common bean, Phaseolus vulgaris. Fungal Biol 120:783–790

    Google Scholar 

  • Patil MG, Pagare J, Patil SN, Sidhu AK (2015) Extracellular enzymatic activities of endophytic fungi isolated from various medicinal plants. Int J Curr Microbiol App Sci 4:1035–1042

    Google Scholar 

  • Peng X-W, Chen H-Z (2007) Microbial oil accumulation and cellulase secretion of the endophytic fungi from oleaginous plants. Ann Microbiol. https://doi.org/10.1007/BF03175213

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Brock/Springer series in contemporary bioscience. Springer, New York. https://doi.org/10.1007/978-1-4612-3168-4_9

    Google Scholar 

  • Petrović S, Škrinjar M, Bećarević A, Vujičić I, Banka L (1990) Effect of various carbon sources on microbial lipases biosynthesis. Biotechnol Lett 12:299–304

    Google Scholar 

  • Phongpaichit S, Rungjindamai N, Rukachaisirikul V, Sakayaroj J (2006) Antimicrobial activity in cultures of endophytic fungi isolated from Garcinia species. FEMS Immunol Med Microbiol 48:367–372

    Google Scholar 

  • Pierre E, Louise NW, Marie TKR, Valere T, Arc-en-ce J, Fekam B (2016) Integrated assessment of phytostimulation and biocontrol potential of endophytic Trichoderma spp against common bean (Phaseolus vulgaris L.) root rot fungi complex in centre region, Cameroon. Int J Pure App Biosci 4:50–68

    Google Scholar 

  • Pieterse Z, Aveling TA, Jacobs A, Cowan DA (2018) Seasonal variability in fungal endophytes from Aizoaceae plants in the Succulent Karoo biodiversity hotspot, South Africa. J Arid Environ. https://doi.org/10.1016/j.jaridenv.2018.05.004

  • Pimentel MR, Molina G, Dionísio AP, Maróstica Junior MR, Pastore GM (2011) The use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol Res Int. https://doi.org/10.4061/2011/576286

  • Pinto LSRC, Azevedo JL, Pereira JO, Vieira MLC, Labate CA (2000) Symptomless infection of banana and maize by endophytic fungi impairs photosynthetic efficiency. New Phytol 147:609–615

    Google Scholar 

  • Polizeli M, Rizzatti A, Monti R, Terenzi H, Jorge JA, Amorim D (2005) Xylanases from fungi: properties and industrial applications. App Microbiol Biotechnol 67:577–591

    Google Scholar 

  • Potshangbam M, Devi SI, Sahoo D, Strobel GA (2017) Functional characterization of endophytic fungal community associated with Oryza sativa L. and Zea mays L. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00325

  • Prade RA (1996) Xylanases: from biology to biotechnology. Biotechnol Genet Eng Rev 13:101–132

    Google Scholar 

  • Prakash G, Bhojwani SS, Srivastava AK (2002) Production of azadirachtin from plant tissue culture: state of the art and future prospects. Biotechnol Bioprocess Eng 7:185–193

    Google Scholar 

  • Premjanu N, Jayanthy C (2012) Endophytic fungi a repository of bioactive compounds – a review. Intl J Inst Phar Life Sci 2:135–162

    Google Scholar 

  • Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An Endophytic Fungus from Nothapodytes foetida that Produces Camptothecin. J Nat Prod 68:1717–1719

    Google Scholar 

  • Qadri M, Rajput R, Abdin MZ, Vishwakarma RA, Riyaz-Ul-Hassan S (2014) Diversity, molecular phylogeny, and bioactive potential of fungal endophytes associated with the Himalayan blue pine (Pinus wallichiana). Microbial Ecol 67:877–887

    Google Scholar 

  • Qi F, Jing T, Zhan Y (2012) Characterization of endophytic fungi from Acer ginnala Maxim. in an artificial plantation: media effect and tissue-dependent variation. PLoS One 7:e46785

    Google Scholar 

  • Rabha AJ, Naglot A, Sharma GD, Gogoi HK, Veer V (2014) In vitro evaluation of antagonism of endophytic Colletotrichum gloeosporioides against potent fungal pathogens of Camellia sinensis. Indian J Microbiol 54:302–309

    Google Scholar 

  • Rabie GH (2005) Role of arbuscular mycorrhizal fungi in phytoremediation of soil rhizosphere spiked with poly aromatic hydrocarbons. Mycobiology 33:41–50

    Google Scholar 

  • Rademacher W (1994) Gibberellin formation in microorganisms. Plant Growth Regul 15:303–314

    Google Scholar 

  • Rafiq M, Dahot MU (2010) Callus and azadirachtin related limonoids production through in vitro culture of neem (Azadirachta indica A. Juss). Afr J Biotechnol 9(4):449–453

    Google Scholar 

  • Ramawat K, Dass S, Mathur M (2009) The chemical diversity of bioactive molecules and therapeutic potential of medicinal plants. In: Ramawat K (ed) Herbal drugs: ethnomedicine to modern medicine. Springer, Berlin/Heidelberg. https://doi.org/10.1007/978-3-540-79116-4_2

    Google Scholar 

  • Ramírez MC, Rivera-Ríos J, Téllez-Jurado A, Gálvez AM, Mercado-Flores Y, Arana-Cuenca A (2012) Screening for thermotolerant ligninolytic fungi with laccase, lipase, and protease activity isolated in Mexico. J Environ Manage 95:S256–S259

    Google Scholar 

  • Rana KL, Kour D, Yadav AN, Kumar V, Dhaliwal HS (2016a) Biotechnological applications of endophytic microbes associated with barley (Hordeum vulgare L.) growing in Indian Himalayan regions. In: Proceeding of 86th annual session of NASI & symposium on “science, technology and entrepreneurship for human welfare in the Himalayan Region”, p 80

    Google Scholar 

  • Rana KL, Kour D, Yadav AN, Kumar V, Dhaliwal HS (2016b) Endophytic microbes from wheat: diversity and biotechnological applications for sustainable agriculture. In: Proceeding of 57th association of microbiologist of India & International symposium on “Microbes and biosphere: what’s new what’s next”. p 453

    Google Scholar 

  • Rana KL, Kour D, Verma P, Yadav AN, Kumar V, Singh DH (2017) Diversity and biotechnological applications of endophytic microbes associated with maize (Zea mays L.) growing in Indian Himalayan regions. In: Proceeding of national conference on advances in food science and technology, pp 41

    Google Scholar 

  • Ratnaweera PB, Williams DE, de Silva ED, Wijesundera RL, Dalisay DS, Andersen RJ (2014) Helvolic acid, an antibacterial nortriterpenoid from a fungal endophyte, Xylaria sp. of orchid Anoectochilus setaceus endemic to Sri Lanka. Mycology 5:23–28

    Google Scholar 

  • Ratnaweera PB, de Silva ED, Williams DE, Andersen RJ (2015a) Antimicrobial activities of endophytic fungi obtained from the arid zone invasive plant Opuntia dillenii and the isolation of equisetin, from endophytic Fusarium sp. BMC Complem Altern Med. https://doi.org/10.1186/s12906-015-0722-4

  • Ratnaweera PB, Williams DE, Patrick BO, de Silva ED, Andersen RJ (2015b) Solanioic acid, an antibacterial degraded steroid produced in culture by the fungus Rhizoctonia solani isolated from tubers of the medicinal plant Cyperus rotundus. Org Lett 17:2074–2077

    Google Scholar 

  • Ratnaweera P, de Silva ED, Wijesundera RL, Andersen RJ (2016) Antimicrobial constituents of Hypocrea virens, an endophyte of the mangrove-associate plant Premna serratifolia L. J Natl Sci Found Sri Lanka 44(1):43–51

    Google Scholar 

  • Ray A (2012) Application of lipase in industry. Asian J Pharm Technol 2(2):33–37

    Google Scholar 

  • Reddy NR, Pierson MD, Sathe SK, Salunkhe DK (1989) Phytates in cereals and legumes. CRC Press, Boca Raton

    Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298:1581–1581

    Google Scholar 

  • Reimerdes EH, Franke K, Sell M (2004) Influencing functional properties of egg yolk by using phospholipases, paper presented at Conf on Food Structure and Food Quality, held on 3–7 October 2004

    Google Scholar 

  • Renuka S, Ramanujam B (2016) Fungal endophytes from maize (Zea mays L.): isolation, identification and screening against maize stem borer, Chilo partellus (Swinhoe). J Pure Appl Microbiol 10:523–529

    Google Scholar 

  • Rhoden S, Garcia A, Rubin Filho C, Azevedo J, Pamphile J (2012) Phylogenetic diversity of endophytic leaf fungus isolates from the medicinal tree Trichilia elegans (Meliaceae). Genet Mol Res 11:2513–2522

    Google Scholar 

  • Rinu K, Sati P, Pandey A (2014) Trichoderma gamsii (NFCCI 2177): a newly isolated endophytic, psychrotolerant, plant growth promoting, and antagonistic fungal strain. J Basic Microbiol 54:408–417

    Google Scholar 

  • Rivera-Orduña FN, Suarez-Sanchez RA, Flores-Bustamante ZR, Gracida-Rodriguez JN, Flores-Cotera LB (2011) Diversity of endophytic fungi of Taxus globosa (Mexican yew). Fungal Divers 47:65–74

    Google Scholar 

  • Rodriguez R, White J Jr, Arnold A, Redman RA (2009) Fungal endophytes: diversity and functional roles. New phytol 182:314–330

    Google Scholar 

  • Rosa LH, Vaz AB, Caligiorne RB, Campolina S, Rosa CA (2009) Endophytic fungi associated with the Antarctic grass Deschampsia antarctica Desv. (Poaceae). Polar Biol 32:161–167

    Google Scholar 

  • Rosa LH, Almeida Vieira ML, Santiago IF, Rosa CA (2010) Endophytic fungi community associated with the dicotyledonous plant Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae) in Antarctica. FEMS Microbiol Ecol 73:178–189

    Google Scholar 

  • Rosa LH, Tabanca N, Techen N, Wedge DE, Pan Z, Bernier UR, Becnel JJ, Agramonte NM, Walker LA, Moraes RM (2012) Diversity and biological activities of endophytic fungi associated with micropropagated medicinal plant Echinacea purpurea (L.) Moench. Am J Plant Sci 3:1105–1114

    Google Scholar 

  • Rothen C, Miranda V, Aranda-Rickert A, Fracchia S, Rodríguez M (2017) Characterization of dark septate endophyte fungi associated with cultivated soybean at two growth stages. App Soil Ecol 120:62–69

    Google Scholar 

  • Ruiz-Dueñas FJ, Martínez MJ, Martínez AT (1999) Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol Microbiol 31:223–235

    Google Scholar 

  • Ruma K, Kumar S, Prakash H (2013) Antioxidant, anti-inflammatory, antimicrobial and cytotoxic properties of fungal endophytes from Garcinia species. Int J Pharm Pharm Sci 5:889–897

    Google Scholar 

  • Ryu DD, Mandels M (1980) Cellulases: biosynthesis and applications. Enzyme Microbial Technol 2:91–102

    Google Scholar 

  • Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK (2017) Hot springs of Indian Himalayas: Potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech 7:1–11

    Google Scholar 

  • Salem HM, Eweida EA, Farag A (2000) Heavy metals in drinking water and their environmental impact on human health. ICEHM 2000:542–556

    Google Scholar 

  • Sani A, Nagam V, Netala VR, Tartte V (2017) Characterization of heavy metal resitant endophytic fungi from Boswellia Ovalifoliolata. Imp J Int Res 3(2):1072–1076

    Google Scholar 

  • Sansinenea E, Ortiz A (2011) Secondary metabolites of soil Bacillus spp. Biotechnol Lett 33:1523–1538

    Google Scholar 

  • Sara B, Noreddine KC, Jacqueline D (2016) Production of laccase without inducer by Chaetomium species isolated from Chettaba forest situated in the East of Algeria. Afr J Biotechnol 15:207–213

    Google Scholar 

  • Satdive RK, Fulzele DP, Eapen S (2007) Enhanced production of azadirachtin by hairy root cultures of Azadirachta indica A. Juss by elicitation and media optimization. J Biotechnol 128:281–289

    Google Scholar 

  • Saunders M, Kohn LM (2008) Host-synthesized secondary compounds influence the in vitro interactions between fungal endophytes of maize. Appl Environ Microbiol 74:136–142

    Google Scholar 

  • Savitha J, Srividya S, Jagat R, Payal P, Priyanki S, Rashmi G, Roshini K, Shantala Y (2007) Identification of potential fungal strain (s) for the production of inducible, extracellular and alkalophilic lipase. Afr J Biotechnol 6(5):564–568

    Google Scholar 

  • Saxena AK, Yadav AN, Kaushik R, Tyagi SP, Shukla L (2015a) Biotechnological applications of microbes isolated from cold environments in agriculture and allied sectors. In: International conference on “low temperature science and biotechnological advances”, society of low temperature biology. p 104. https://doi.org/10.13140/RG.2.1.2853.5202

  • Saxena S, Meshram V, Kapoor N (2015b) Muscodor tigerii sp. nov.-Volatile antibiotic producing endophytic fungus from the Northeastern Himalayas. Ann Microbiol 65:47–57

    Google Scholar 

  • Saxena AK, Yadav AN, Rajawat M, Kaushik R, Kumar R, Kumar M, Prasanna R, Shukla L (2016) Microbial diversity of extreme regions: an unseen heritage and wealth. Indian J Plant Genet Resour 29:246–248

    Google Scholar 

  • Schaechter M (2012) Eukaryotic Microbes. Elsevier, San Diego

    Google Scholar 

  • Schulz B, Boyle C, Draeger S, Römmert A-K, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004

    Google Scholar 

  • Schwarze FW, Engels J, Mattheck C (2000) Fundamental aspects. In: Fungal strategies of wood decay in trees. Springer, Heidelberg, pp 5–31

    Google Scholar 

  • Selim KA, Nagia MM, Ghwas DEE (2017) Endophytic fungi are multifunctional biosynthesizers: ecological role and chemical diversity. In: Endophytic fungi: diversity, characterization and Biocontrol, nova publishers, New York, pp 39–92

    Google Scholar 

  • Selvanathan S, Indrakumar I, Johnpaul M (2011) Biodiversity of the endophytic fungi isolated from Calotropis gigantea (L.) R. Br. Recent Res Sci Technol 3(4):94–100

    Google Scholar 

  • Sharma D, Pramanik A, Agrawal PK (2016) Evaluation of bioactive secondary metabolites from endophytic fungus Pestalotiopsis neglectaBAB-5510 isolated from leaves of Cupressus torulosa D. Don. 3 Biotech. https://doi.org/10.1007/s13205-016-0518-3

  • Shi Y, Dai C, Wu Y, Yuan Z (2004) Study on the degradation of wheat straw by endophytic fungi. ACTA Scientiae Circumstantiae 1:27

    Google Scholar 

  • Shweta S, Zuehlke S, Ramesha B, Priti V, Kumar PM, Ravikanth G, Spiteller M, Vasudeva R, Shaanker RU (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71:117–122

    Google Scholar 

  • Sieber T, Riesen T, Müller E, Fried P (1988) Endophytic fungi in four winter wheat cultivars (Triticum aestivum L.) differing in resistance against Stagonospora nodorum (Berk.) Cast. & Germ.= Septoria nodorum (Berk.) Berk. J Phytopathol 122:289–306

    Google Scholar 

  • Silva GH, de Oliveira CM, Teles HL, Pauletti PM, Castro-Gamboa I, Silva DH, Bolzani VS, Young MC, Costa-Neto CM, Pfenning LH (2010) Sesquiterpenes from Xylaria sp., an endophytic fungus associated with Piper aduncum (Piperaceae). Phytochem Lett 3:164–167

    Google Scholar 

  • Singh H (2006) Mycoremediation: fungal bioremediation. Wiley, Hoboken

    Google Scholar 

  • Singh SP, Gaur R (2017) Endophytic Streptomyces spp. underscore induction of defense regulatory genes and confers resistance against Sclerotium rolfsii in chickpea. Biol Control 104:44–56

    Google Scholar 

  • Singh AK, Mukhopadhyay M (2012) Overview of fungal lipase: a review. Appl Biochem Biotechnol 166:486–520

    Google Scholar 

  • Singh RN, Gaba S, Yadav AN, Gaur P, Gulati S, Kaushik R, Saxena AK (2016) First, high quality draft genome sequence of a plant growth promoting and Cold Active Enzymes producing psychrotrophic Arthrobacter agilis strain L77. Stand Genomic Sci 11:54. https://doi.org/10.1186/s40793-016-0176-4

    Google Scholar 

  • Soleimani M, Hajabbasi MA, Afyuni M, Mirlohi A, Borggaard OK, Holm PE (2010) Effect of endophytic fungi on cadmium tolerance and bioaccumulation by Festuca arundinacea and Festuca pratensis. Int J Phytoremediat 12:535–549

    Google Scholar 

  • Sommart U, Rukachaisirikul V, Tadpetch K, Sukpondma Y, Phongpaichit S, Hutadilok-Towatana N, Sakayaroj J (2012) Modiolin and phthalide derivatives from the endophytic fungus Microsphaeropsis arundinis PSU-G18. Tetrahedron 68:10005–10010

    Google Scholar 

  • Sorgatto M, Guimarães N, Zanoelo F, Marques M, Peixoto-Nogueira S, Giannesi G (2012) Purification and characterization of an extracellular xylanase produced by the endophytic fungus, Aspergillus terreus, grown in submerged fermentation. Afr J Biotechnol 11:8076–8084

    Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:a001438

    Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Google Scholar 

  • Spagnoletti F, Tobar N, Di Pardo AF, Chiocchio V, Lavado R (2017) Dark septate endophytes present different potential to solubilize calcium, iron and aluminum phosphates. Appl Soil Ecol 111:25–32

    Google Scholar 

  • Šraj-Kržič N, Pongrac P, Klemenc M, Kladnik A, Regvar M, Gaberščik A (2006) Mycorrhizal colonisation in plants from intermittent aquatic habitats. Aquat Bot 85:331–336

    Google Scholar 

  • Srivastava P, Andersen PC, Marois JJ, Wright DL, Srivastava M, Harmon PF (2013) Effect of phenolic compounds on growth and ligninolytic enzyme production in Botryosphaeria isolates. Crop Prot 43:146–156

    Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216

    Google Scholar 

  • Strobel GA (2002) Rainforest endophytes and bioactive products. Crit Rev Biotechnol 22:315–333

    Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Google Scholar 

  • Strobel GA, Pliam NB (1997) Immuno suppressant diterpene compound. Google Patents

    Google Scholar 

  • Strobel GA, Torczynski R, Bollon A (1997) Acremonium sp. – a leucinostatin A producing endophyte of European yew (Taxus baccata). Plant Sci 128:97–108

    Google Scholar 

  • Strobel GA, Miller RV, Martinez-Miller C, Condron MM, Teplow DB, Hess W (1999) Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 145:1919–1926

    Google Scholar 

  • Strobel G, Ford E, Worapong J, Harper JK, Arif AM, Grant DM, Fung PC, Chau RMW (2002) Isopestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry 60:179–183

    Google Scholar 

  • Sturz A, Christie B, Matheson B, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fert Soils 25:13–19

    Google Scholar 

  • Su H, Kang J, Cao J, Mo L, Hyde KD (2014) Medicinal plant endophytes produce analogous bioactive compounds. Chiang Mai J Sc 41:1–13

    Google Scholar 

  • Sudhakar T, Dash S, Rao R, Srinivasan R, Zacharia S, Atmanand M, Subramaniam B, Nayak S (2013) Do endophytic fungi possess pathway genes for plant secondary metabolites? Curr Sci 104(2):178

    Google Scholar 

  • Suffness M (1995) Taxol: science and applications, vol 22. CRC Press, Boca Raton

    Google Scholar 

  • Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases-production, applications and challenges. J Sci Ind Res 64(11):832–844

    Google Scholar 

  • Suman A, Verma P, Yadav AN, Saxena AK (2015) Bioprospecting for extracellular hydrolytic enzymes from culturable thermotolerant bacteria isolated from Manikaran thermal springs. Res J Biotechnol 10:33–42

    Google Scholar 

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, research perspectives. Springer, New Delhi, pp 117–143. https://doi.org/10.1007/978-81-322-2647-5_7

    Google Scholar 

  • Sun X, Guo LD, Hyde K (2011a) Community composition of endophytic fungi in Acer truncatum and their role in decomposition. Fungal Divers 47:85–95

    Google Scholar 

  • Sun Y, Luo H, Li Y, Sun C, Song J, Niu Y, Zhu Y, Dong L, Lv A, Tramontano E (2011b) Pyrosequencing of the Camptotheca acuminata transcriptome reveals putative genes involved in camptothecin biosynthesis and transport. BMC Genomics. https://doi.org/10.1186/1471-2164-12-533

  • Sun J-F, Lin X, Zhou X-F, Wan J, Zhang T, Yang B, Yang X-W, Tu Z, Liu Y (2014) Pestalols A–E, new alkenyl phenol and benzaldehyde derivatives from endophytic fungus Pestalotiopsis sp. AcBC2 isolated from the Chinese mangrove plant Aegiceras corniculatum. J Antibiot 67:451–457

    Google Scholar 

  • Sunitha V, Devi DN, Srinivas C (2013) Extracellular enzymatic activity of endophytic fungal strains isolated from medicinal plants. World J Agri Sci 9:01–09

    Google Scholar 

  • Suryanarayanan T, Senthilarasu G, Muruganandam V (2000) Endophytic fungi from Cuscuta reflexa and its host plants. Fungal Divers 4:117–123

    Google Scholar 

  • Suryanarayanan TS, Wittlinger SK, Faeth SH (2005) Endophytic fungi associated with cacti in Arizona. Mycol Res 109:635–639

    Google Scholar 

  • Suto M, Takebayashi M, Saito K, Tanaka M, Yokota A, Tomita F (2002) Endophytes as producers of xylanase. J Biosci Bioeng 93:88–90

    Google Scholar 

  • Syed S, Riyaz-Ul-Hassan S, Johri S (2013) A novel cellulase from an endophyte, Penicillium sp. NFCCI 2862. Am J Microbiol Res 1:84–91

    Google Scholar 

  • Sztajer H, Maliszewska I (1989) The effect of culture conditions on lipolytic productivity of Penicillium citrinum. Biotechnol Lett 11:895–898

    Google Scholar 

  • Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, van der Lelie D (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757

    Google Scholar 

  • Tamehiro N, Okamoto-Hosoya Y, Okamoto S, Ubukata M, Hamada M, Naganawa H, Ochi K (2002) Bacilysocin, a novel phospholipid antibiotic produced by Bacillus subtilis 168. Antimicrob Agents Chemother 46:315–320

    Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. https://doi.org/10.1093/molbev/msr121

    Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Google Scholar 

  • Tasia W, Melliawati R (2017) Cellulase and xylanase production from three isolates of indigenous endophytic fungi. IOP Conf. Ser.: Earth Environ Sci 101:012035​

    Google Scholar 

  • Tejesvi MV, Kajula M, Mattila S, Pirttilä AM (2011) Bioactivity and genetic diversity of endophytic fungi in Rhododendron tomentosum Harmaja. Fungal Divers 47:97–107

    Google Scholar 

  • Tekere M, Mswaka A, Zvauya R, Read J (2001) Growth, dye degradation and ligninolytic activity studies on Zimbabwean white rot fungi. Enzyme Microbial Technol 28:420–426

    Google Scholar 

  • Tenguria RK, Firodiya A (2013) Diversity of endophytic fungi in leaves of Glycine max (L.) merr. from central region of Madhya Pradesh. World J Pharm Pharm Sci 2:5928–5934

    Google Scholar 

  • Tenguria RK, Khan FN, Quereshi S (2011) Endophytes-mines of pharmacological therapeutics. World J Sci Technol 1:127–149

    Google Scholar 

  • Thomas L, Joseph A, Singhania RR, Patel A, Pandey A (2017) Industrial enzymes: xylanases. In: Current developments in biotechnology and bioengineering. Elsevier, Amsterdam/Boston, pp 127–148

    Google Scholar 

  • Thongsandee W, Matsuda Y, Ito S (2012) Temporal variations in endophytic fungal assemblages of Ginkgo biloba L. J Forest Res 17:213–218

    Google Scholar 

  • Tian X, Cao L, Tan H, Zeng Q, Jia Y, Han W, Zhou S (2004) Study on the communities of endophytic fungi and endophytic actinomycetes from rice and their antipathogenic activities in vitro. World J Microbiol Biotechnol 20:303–309

    Google Scholar 

  • Tian X, Yao Y, Chen G, Mao Z, Wang X, Xie B (2014) Suppression of Meloidogyne incognita by the endophytic fungus Acremonium implicatum from tomato root galls. Int J Pest Manage 60:239–245

    Google Scholar 

  • Tian J, Fu L, Zhang Z, Dong X, Xu D, Mao Z, Liu Y, Lai D, Zhou L (2017) Dibenzo-α-pyrones from the endophytic fungus Alternaria sp. Samif01: isolation, structure elucidation, and their antibacterial and antioxidant activities. Nat Prod Res 31:387–396

    Google Scholar 

  • Tien M (1987) Properties of ligninase from Phanerochaete chrysosporium and their possible applications. Crit Rev Microbiol 15:141–168

    Google Scholar 

  • Toghueo R, Ejiya E, Sahal D, Yazdani S, Boyom F (2017) Production of cellulolytic enzymes by endophytic fungi isolated from Cameroonian medicinal plants. Int J Curr Microbiol App Sci 6:1264–1271

    Google Scholar 

  • Tomita F (2003) Endophytes in Southeast Asia and Japan: their taxonomic diversity and potential applications. Fungal Divers 14:187–204

    Google Scholar 

  • Torres M, Dolcet MM, Sala N, Canela R (2003) Endophytic fungi associated with Mediterranean plants as a source of mycelium-bound lipases. J Agri Food Chem 51:3328–3333

    Google Scholar 

  • Traving SJ, Thygesen UH, Riemann L, Stedmon CA (2015) A model of extracellular enzymes in free-living microbes: which strategy pays off? Appl Environ Microbiol 81:7385–7393

    Google Scholar 

  • Tsujisaka Y, Iwai M, Tominaga Y (1973) Purification, crystallization and some properties of lipase from Geotrichum candidum Link. Agric Biol Chem 37:1457–1464

    Google Scholar 

  • Uhlig H (1998) Industrial enzymes and their applications. Wiley, New York

    Google Scholar 

  • Undurraga D, Markovits A, Erazo S (2001) Cocoa butter equivalent through enzymic interesterification of palm oil midfraction. Process Biochem 36:933–939

    Google Scholar 

  • Urairuj C, Khanongnuch C, Lumyong S (2003) Ligninolytic enzymes from tropical endophytic Xylariaceae. Fungal Divers 13:209–219

    Google Scholar 

  • Uzma F, Konappa NM, Chowdappa S (2016) Diversity and extracellular enzyme activities of fungal endophytes isolated from medicinal plants of Western Ghats, Karnataka. Egyptian J Basic Appl Sci 3:335–342

    Google Scholar 

  • Van Dyk J, Pletschke B (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnol Adv 30:1458–1480

    Google Scholar 

  • Vandenbussche F, Fierro AC, Wiedemann G, Reski R, Van Der Straeten D (2007) Evolutionary conservation of plant gibberellin signalling pathway components. BMC Plant Biol. https://doi.org/10.1186/1471-2229-7-65

  • Vasundhara M, Kumar A, Reddy MS (2016) Molecular approaches to screen bioactive compounds from endophytic fungi. Front Microbiol. https://doi.org/10.3389/fmicb.2016.01774

  • Veitch GE, Beckmann E, Burke BJ, Boyer A, Ayats C, Ley SV (2007a) A relay route for the synthesis of azadirachtin. Angew Chem Int Ed 46:7633–7635

    Google Scholar 

  • Veitch GE, Beckmann E, Burke BJ, Boyer A, Maslen SL, Ley SV (2007b) Synthesis of azadirachtin: a long but successful journey. Angew Chem Int Ed 46:7629–7632

    Google Scholar 

  • Veitch GE, Beckmann E, Burke BJ, Boyer A, Maslen SL, Ley SV (2007c) Titelbild: synthesis of Azadirachtin: a long but successful journey (Angew. Chem. 40/2007). Angew Chemi 119:7663–7663

    Google Scholar 

  • Venkatesagowda B, Ponugupaty E, Barbosa AM, Dekker RF (2012) Diversity of plant oil seed-associated fungi isolated from seven oil-bearing seeds and their potential for the production of lipolytic enzymes. World J Microbiol Biotechnol 28:71–80

    Google Scholar 

  • Venugopalan A, Srivastava S (2015) Endophytes as in vitro production platforms of high value plant secondary metabolites. Biotechnol Adv 33:873–887

    Google Scholar 

  • Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2013) Elucidating the diversity and plant growth promoting attributes of wheat (Triticum aestivum) associated acidotolerant bacteria from southern hills zone of India. Natl J Life Sci 10:219–227

    Google Scholar 

  • Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2014a) Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int J Curr Microbiol Appl Sci 3:432–447

    Google Scholar 

  • Verma VC, Prakash S, Singh RG, Gange AC (2014b) Host-mimetic metabolomics of endophytes: looking back into the future. In: Advances in endophytic research. Springer, New Delhi, pp 203–218

    Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015a) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899

    Google Scholar 

  • Verma P, Yadav AN, Shukla L, Saxena AK, Suman A (2015b) Alleviation of cold stress in wheat seedlings by Bacillus amyloliquefaciens IARI-HHS2-30, an endophytic psychrotolerant K-solubilizing bacterium from NW Indian Himalayas. Natl J Life Sci 12:105–110

    Google Scholar 

  • Verma P, Yadav AN, Shukla L, Saxena AK, Suman A (2015c) Hydrolytic enzymes production by thermotolerant Bacillus altitudinis IARI-MB-9 and Gulbenkiania mobilis IARI-MB-18 isolated from Manikaran hot springs. Int J Adv Res 3:1241–1250

    Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016a) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58

    Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK, Suman A (2016b) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2016.01.042

  • Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crops improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer Nature, Singapore, pp 543–580. https://doi.org/10.1007/978-981-10-6593-4_22

    Google Scholar 

  • Verza M, Arakawa NS, Lopes NP, Kato MJ, Pupo MT, Said S, Carvalho I (2009) Biotransformation of a tetrahydrofuran lignan by the endophytic fungus Phomopsis Sp. J Braz Chem Soc 20:195–200

    Google Scholar 

  • Vieira ML, Hughes AF, Gil VB, Alves TM, Vaz AB, Zani CL, Rosa CA, Rosa LH (2011) Diversity and antimicrobial activities of the fungal endophyte community associated with the traditional Brazilian medicinal plant Solanum cernuum Vell.(Solanaceae). Can J Microbiol 58:54–66

    Google Scholar 

  • Wagenaar MM, Corwin J, Strobel G, Clardy J (2000) Three new cytochalasins produced by an endophytic fungus in the genus Rhinocladiella. J Nat Prod 63:1692–1695

    Google Scholar 

  • Wakelin SA, Warren RA, Harvey PR, Ryder MH (2004) Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol Fert Soils 40:36–43

    Google Scholar 

  • Wall ME, Wani MC, Cook C, Palmer KH, McPhail AT, Sim G (1966) Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc 88:3888–3890

    Google Scholar 

  • Wang Y, Dai C-C (2011) Endophytes: a potential resource for biosynthesis, biotransformation, and biodegradation. Ann Microbiol 61:207–215

    Google Scholar 

  • Wang J, Wu J, Huang W, Tan R (2006a) Laccase production by Monotospora sp., an endophytic fungus in Cynodon dactylon. Bioresour Technol 97:786–789

    Google Scholar 

  • Wang S, Li X-M, Teuscher F, Li D-L, Diesel A, Ebel R, Proksch P, Wang B-G (2006b) Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata. J Nat Prod 69:1622–1625

    Google Scholar 

  • Wang Y, Niu S, Liu S, Guo L, Che Y (2010a) The first naturally occurring thiepinols and thienol from an endolichenic fungus Coniochaeta sp. Org Lett 12:5081–5083

    Google Scholar 

  • Wang Y, Zheng Z, Liu S, Zhang H, Li E, Guo L, Che Y (2010b) Oxepinochromenones, furochromenone, and their putative precursors from the endolichenic fungus Coniochaeta sp. J Nat Prod 73:920–924

    Google Scholar 

  • Wang L-W, Xu BG, Wang J-Y, Su Z-Z, Lin F-C, Zhang C-L, Kubicek CP (2012) Bioactive metabolites from Phoma species, an endophytic fungus from the Chinese medicinal plant Arisaema erubescens. Appl Microbiol Biotechnol 93:1231–1239

    Google Scholar 

  • Wang Q-X, Bao L, Yang X-L, Liu D-L, Guo H, Dai H-Q, Song F-H, Zhang L-X, Guo L-D, Li S-J (2013) Ophiobolins P–T, five new cytotoxic and antibacterial sesterterpenes from the endolichenic fungus Ulocladium sp. Fitoterapia 90:220–227

    Google Scholar 

  • Wang W, Zhai Y, Cao L, Tan H, Zhang R (2016) Endophytic bacterial and fungal microbiota in sprouts, roots and stems of rice (Oryza sativa L.). Microbiol Res 188:1–8

    Google Scholar 

  • Waqas M, Khan AL, Kamran M, Hamayun M, Kang S-M, Kim Y-H, Lee I-J (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17:10754–10773

    Google Scholar 

  • Weber D, Sterner O, Anke T, Gorzalczancy S, Martino V, Acevedo C (2004) Phomol, a new antiinflammatory metabolite from an endophyte of the medicinal plant Erythrina crista-galli. J Antibiot 57:559–563

    Google Scholar 

  • Will M, Sylvia D (1990) Interaction of rhizosphere bacteria, fertilizer, and vesicular-arbuscular mycorrhizal fungi with sea oats. Appl Environ Microbiol 56:2073–2079

    Google Scholar 

  • Wipusaree N, Sihanonth P, Piapukiew J, Sangvanich P, Karnchanatat A (2011) Purification and characterization of a xylanase from the endophytic fungus Alternaria alternata isolated from the Thai medicinal plant, Croton oblongifolius Roxb. African J Microbiol Res 5:5697–5712

    Google Scholar 

  • Wong DW (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157:174–209

    Google Scholar 

  • Wu SH, Chen YW, Shao SC, Wang LD, Yu Y, Li ZY, Yang LY, Li SL, Huang R (2009) Two new solanapyrone analogues from the endophytic fungus Nigrospora sp. YB-141 of Azadirachta indica. Chem Biodivers 6:79–85

    Google Scholar 

  • Wu H, Yang HY, You XL, Li YH (2013) Diversity of endophytic fungi from roots of Panax ginseng and their saponin yield capacities. SpringerPlus 2:107. https://doi.org/10.1186/2193-1801-2-107

    Google Scholar 

  • Xie X-G, Dai C-C (2015) Biodegradation of a model allelochemical cinnamic acid by a novel endophytic fungus Phomopsis liquidambari. Int Biodeterior Biodegradation 104:498–507

    Google Scholar 

  • Xing Y-M, Chen J, Cui J-L, Chen X-M, Guo S-X (2011) Antimicrobial activity and biodiversity of endophytic fungi in Dendrobium devonianum and Dendrobium thyrsiflorum from Vietnam. Curr Microbiol 62:1218–1224

    Google Scholar 

  • Xing HQ, Ma JC, Xu BL, Zhang SW, Wang J, Cao L, Yang XM (2018) Mycobiota of maize seeds revealed by rDNA-ITS sequence analysis of samples with varying storage times. Microbiology Open 7(6):e00609

    Google Scholar 

  • Xiong Z-Q, Yang Y-Y, Zhao N, Wang Y (2013) Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus x media. BMC Microbiol. https://doi.org/10.1186/1471-2180-13-71

  • Xu QY, Huang YJ, Zheng ZH, Song SY (2005) Purification, elucidation and activities study of cytosporone. B J Xiamen Univ Nat Sci 44:425–428

    Google Scholar 

  • Xu YM, Espinosa-Artiles P, Liu MX, Arnold AE, Gunatilaka AL (2013) Secoemestrin D, a Cytotoxic Epitetrathiodioxopiperizine, and Emericellenes A–E, Five Sesterterpenoids from Emericella sp. AST0036, a Fungal Endophyte of Astragalus lentiginosus 1. J Nat Prod 76:2330–2336

    Google Scholar 

  • Yadav AN (2015) Bacterial diversity of cold deserts and mining of genes for low temperature tolerance. Ph.D. Thesis, IARI, New Delhi/BIT, Ranchi. p 234. https://doi.org/10.13140/RG.2.1.2948.1283/2

  • Yadav AN (2019) Endophytic fungi for plant growth promotion and adaptation under abiotic stress conditions. Acta Sci Agric 3:91–93

    Google Scholar 

  • Yadav AN, Verma P, Sachan S, Kaushik R, Saxena A (2012) Diversity of culturable psychrotrophic bacteria from Leh Ladakh and bioprospecting for cold-active extracellular enzymes. In: Proceeding of national seminar on “biotechnological interventions for the benefit of mankind”, New Delhi, p 32

    Google Scholar 

  • Yadav N, Yadav AN (2018) Biodiversity and biotechnological applications of novel plant growth promoting methylotrophs. J Appl Biotechnol Bioeng 5:342–344

    Google Scholar 

  • Yadav R, Singh AV, Joshi S, Kumar M (2015) Antifungal and enzyme activity of endophytic fungi isolated from Ocimum sanctum and Aloe vera. Afr J Microbiol Res 9:1783–1788

    Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2015a) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119:683–693

    Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015b) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31:95–108

    Google Scholar 

  • Yadav AN, Verma P, Kumar M, Pal KK, Dey R, Gupta A, Padaria JC, Gujar GT, Kumar S, Suman A, Prasanna R, Saxena AK (2015c) Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India. Ann Microbiol 65:611–629

    Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307

    Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2017a) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:1–13

    Google Scholar 

  • Yadav AN, Verma P, Kumar R, Kumar V, Kumar K (2017b) Current applications and future prospects of eco-friendly microbes. EU Voice 3:21–22

    Google Scholar 

  • Yadav AN, Verma P, Kumar V, Sachan SG, Saxena AK (2017c) Extreme cold environments: a suitable niche for selection of novel psychrotrophic microbes for biotechnological applications. Adv Biotechnol Microbiol 2:1–4

    Google Scholar 

  • Yadav AN, Verma P, Sachan SG, Saxena AK (2017d) Biodiversity and biotechnological applications of psychrotrophic microbes isolated from Indian Himalayan regions. EC Microbiol ECO. 01:48–54

    Google Scholar 

  • Yadav AN, Kumar V, Prasad R, Saxena AK, Dhaliwal HS (2018a) Microbiome in crops: diversity, distribution and potential role in crops improvements. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, San Diego, pp 305–332

    Google Scholar 

  • Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018b) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18. https://doi.org/10.1016/B978-0-444-63501-3.00001-6

    Google Scholar 

  • Yamazaki Y, Sudo H, Yamazaki M, Aimi N, Saito K (2003) Camptothecin biosynthetic genes in hairy roots of Ophiorrhiza pumila: cloning, characterization and differential expression in tissues and by stress compounds. Plant Cell Physiol 44:395–403

    Google Scholar 

  • Yamazaki Y, Kitajima M, Arita M, Takayama H, Sudo H, Yamazaki M, Aimi N, Saito K (2004) Biosynthesis of camptothecin. In silico and in vivo tracer study from [1-13C] glucose. Plant Physiol 134:161–170

    Google Scholar 

  • Yang Y, Yan M, Hu B (2014) Endophytic fungal strains of soybean for lipid production. Bioenergy Res 7:353–361

    Google Scholar 

  • Yang H, Ye W, Ma J, Zeng D, Rong Z, Xu M, Wang Y, Zheng X (2018) Endophytic fungal communities associated with field-grown soybean roots and seeds in the Huang-Huai region of China. Peer J 6:e4713

    Google Scholar 

  • Yuan ZL, Zhang CL, Lin FC, Kubicek CP (2010) Identity, diversity, and molecular phylogeny of the endophytic mycobiota in the roots of rare wild rice (Oryza granulate) from a nature reserve in Yunnan, China. Appl Environ Microbiol 76:1642–1652

    Google Scholar 

  • Yuan C, Wang H-Y, Wu C-S, Jiao Y, Li M, Wang Y-Y, Wang S-Q, Zhao Z-T, Lou H-X (2013) Austdiol, fulvic acid and citromycetin derivatives from an endolichenic fungus, Myxotrichum sp. Phytochem Lett 6:662–666

    Google Scholar 

  • Yuan Y, Feng H, Wang L, Li Z, Shi Y, Zhao L, Feng Z, Zhu H (2017) Potential of endophytic fungi isolated from cotton roots for biological control against Verticillium Wilt disease. PloS One 12:e0170557

    Google Scholar 

  • Zaferanloo B, Pepper SA, Coulthard SA, Redfern CP, Palombo EA (2018) Metabolites of endophytic fungi from Australian native plants as potential anticancer agents. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fny078

  • Zhang SS-QOM, Qi-Yong Z-DT (2007) Isolation and characterization of endophytic microorganisms in glycyrrhiza inflata Bat. from Xinjiang [J]. Microbiology 5:14

    Google Scholar 

  • Zhang L, Guo B, Li H, Zeng S, Shao H, Gu S, Wei R (2000) Preliminary study on the isolation of endophytic fungus of Catharanthus roseus and its fermentation to produce products of therapeutic value. Chin Trad Herb Drugs 31:805–807

    Google Scholar 

  • Zhang Y, Wang S, Li X-M, Cui C-M, Feng C, Wang B-G (2007) New sphingolipids with a previously unreported 9-methyl-C20-sphingosine moiety from a marine algous endophytic fungus Aspergillus niger EN-13. Lipids 42:759–764

    Google Scholar 

  • Zhang HW, Huang WY, Chen JR, Yan WZ, Xie DQ, Tan RX (2008) Cephalosol: an antimicrobial metabolite with an unprecedented skeleton from endophytic Cephalosporium acremonium IFB-E007. Chem Eur J 14:10670–10674

    Google Scholar 

  • Zhang F, Liu S, Lu X, Guo L, Zhang H, Che Y (2009a) Allenyl and alkynyl phenyl ethers from the endolichenic fungus Neurospora terricola. J Nat Prod 72:1782–1785

    Google Scholar 

  • Zhang P, Zhou PP, Yu LJ (2009b) An endophytic taxol-producing fungus from Taxus x media, Aspergillus candidus MD3. FEMS Microbiol Lett 293:155–159

    Google Scholar 

  • Zhang F, Li L, Niu S, Si Y, Guo L, Jiang X, Che Y (2012) A thiopyranchromenone and other chromone derivatives from an endolichenic fungus, Preussia africana. J Nat Prod 75:230–237

    Google Scholar 

  • Zhang W, Xu L, Yang L, Huang Y, Li S, Shen Y (2014) Phomopsidone A, a novel depsidone metabolite from the mangrove endophytic fungus Phomopsis sp. A123. Fitoterapia 96:146–151

    Google Scholar 

  • Zhao J, Mou Y, Shan T, Li Y, Zhou L, Wang M, Wang J (2010) Antimicrobial metabolites from the endophytic fungus Pichia guilliermondii isolated from Paris polyphylla var. yunnanensis. Molecules 15:7961–7970

    Google Scholar 

  • Zhao J, Fu Y, Luo M, Zu Y, Wang W, Zhao C, Gu C (2012) Endophytic fungi from pigeon pea [Cajanus cajan (L.) Millsp.] produce antioxidant cajaninstilbene acid. J Agric Food Chem 60:4314–4319

    Google Scholar 

  • Zhao J, Li C, Wang W, Zhao C, Luo M, Mu F, Fu Y, Zu Y, Yao M (2013) Hypocrea lixii, novel endophytic fungi producing anticancer agent cajanol, isolated from pigeon pea (C ajanuscajan [L.] Millsp.). J Appl Microbiol 115:102–113

    Google Scholar 

  • Zhao J, Ma D, Luo M, Wang W, Zhao C, Zu Y, Fu Y, Wink M (2014) In vitro antioxidant activities and antioxidant enzyme activities in HepG2 cells and main active compounds of endophytic fungus from pigeon pea [Cajanus cajan (L.) Millsp.]. Food Res Int 56:243–251

    Google Scholar 

  • Zhao L, Xu Y, Lai X (2018) Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties. Braz J Microbiol 49:269–278

    Google Scholar 

  • Zheng C-J, Li L, Zou J-P, Han T, Qin L-P (2012) Identification of a quinazoline alkaloid produced by Penicillium vinaceum, an endophytic fungus from Crocus sativus. Pharm Biol 50:129–133

    Google Scholar 

  • Zheng C-J, Xu L-L, Li Y-Y, Han T, Zhang Q-Y, Ming Q-L, Rahman K, Qin L-P (2013) Cytotoxic metabolites from the cultures of endophytic fungi from Panax ginseng. Appl Microbiol Biotechnol 97:7617–7625

    Google Scholar 

  • Zhou X, Zhu H, Liu L, Lin J, Tang K (2010) A review: recent advances and future prospects of taxol-producing endophytic fungi. Appl Microbiol Biotechnol 86:1707–1717

    Google Scholar 

  • Zhou X-M, Zheng C-J, Song X-P, Han C-R, Chen W-H, Chen G-Y (2014) Antibacterial α-pyrone derivatives from a mangrove-derived fungus Stemphylium sp. 33231 from the South China Sea. J Antibiot 67:401–403

    Google Scholar 

  • Zhou P, Wu Z, Tan D, Yang J, Zhou Q, Zeng F, Zhang M, Bie Q, Chen C, Xue Y (2017) Atrichodermones A–C, three new secondary metabolites from the solid culture of an endophytic fungal strain, Trichoderma atroviride. Fitoterapia 123:18–22

    Google Scholar 

  • Zikmundova M, Drandarov K, Bigler L, Hesse M, Werner C (2002) Biotransformation of 2-benzoxazolinone and 2-hydroxy-1, 4-benzoxazin-3-one by endophytic fungi isolated from Aphelandra tetragona. Appl Environ Microbiol 68:4863–4870

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Harcharan Singh Dhaliwal, Vice Chancellor, Eternal University, Baru Sahib, Himachal Pradesh, India, for providing infra-structural facilities and constant encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajar Nath Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rana, K.L. et al. (2019). Endophytic Fungi: Biodiversity, Ecological Significance, and Potential Industrial Applications. In: Yadav, A., Mishra, S., Singh, S., Gupta, A. (eds) Recent Advancement in White Biotechnology Through Fungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-10480-1_1

Download citation

Publish with us

Policies and ethics