Skip to main content

Thermal Design and Optimization of Few Miscellaneous Systems

  • Chapter
  • First Online:
  • 986 Accesses

Abstract

There are a few thermal components which can play an important role in power-generating systems, refrigeration systems, or any such system. Similarly, there are few thermal systems which can be operated with solar energy. In this chapter, thermal modeling of few such systems like the cooling tower , heat pipe , micro-channel heat sink , solar air heater , solar water heater , solar chimney , and other systems of such type is presented. The objective function for each of these systems is derived from the thermal model . The optimization of a derived objective is performed by implementing 11 different metaheuristic algorithms for each system, and then the comparative results are tabulated and discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akpinar E.K. and Koçyiğit F. (2010) ‘Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates’, Applied Energy, vol. 87(11), 3438–3450.

    Article  Google Scholar 

  • Alta D., Bilgili E., Ertekin C. and Yaldiz O. (2010) ‘Experimental investigation of three different solar air heaters, energy and exergy analyses’, Applied Energy, vol. 87(10), 2953–2973.

    Google Scholar 

  • Altfeld K., Leiner W. and Fiebig M. (1988) ‘Second law optimization of flat plate solar air heaters Part I The concept of net exergy flow and the modeling of solar air heaters’, Solar Energy, vol. 41(2),127–132.

    Google Scholar 

  • Atashkari K, Nariman-Zadeh N, Pilechi A, Jamali A and Yao X. (2005) ‘Thermodynamic Pareto optimization of turbojet engines using multi-objective genetic algorithms’, International Journal of Thermal Sciences, vol. 44(11),1061–1071.

    Article  Google Scholar 

  • Atia D.M., Fahmy F.H., Ahmed N.M. and Dorrah H.T., (2012) ‘Optimal sizing of a solar water heating system based on a genetic algorithm for an aquaculture system’, Mathematical and Computer Modelling’, vol. 55(3–4), 1436–1449.

    Article  Google Scholar 

  • Badami M, Nuccio P, Pastrone D and Signoretto A. (2014) ‘Performance of a small-scale turbojet engine fed with traditional and alternative fuels’, Energy Conversation and Management’, vol. 82, 219–228.

    Article  Google Scholar 

  • Badami M, Nuccio P and Signoretto A. (2013) ‘Experimental and numerical analysis of a small scale turbojet engine’, Energy Conversation and Management, vol. 76, 225–233.

    Article  Google Scholar 

  • Balli O. (2017) ‘Advanced exergy analyses to evaluate the performance of a military aircraft turbojet engine (TJE) with afterburner system, Splitting exergy destruction into unavoidable/avoidable and endogenous/exogenous’, Applied Thermal Engineering vol. 111, 152–169.

    Article  Google Scholar 

  • Benini E, Pandolfo S and Zoppellari S. (2009) ‘Reduction of NO emissions in a turbojet combustor by direct water/steam injection, Numerical and experimental assessment’, Applied Thermal Engineering, vol. 29, 3506–3510.

    Article  Google Scholar 

  • Castro MM, Songa TW and Pinto JM. (2000) ‘Minimization of operational costs in cooling water systems’, Chemical Engineering Research and Design, vol. 78(2), 192–201.

    Google Scholar 

  • Chaabane M., Mhiri H. and Bournot, P. (2014) ‘Thermal performance of an integrated collector storage solar water heater (ICSSWH) with phase change materials (PCM)’, Energy conversion and management, vol. 78, 897–903.

    Article  Google Scholar 

  • Chein R. and Huang G. (2005) ‘Analysis of microchannel heat sink performance using nano fluids’, Applied thermal engineering, vol. 25(17–18), 3104–3114.

    Article  Google Scholar 

  • Cortinovis GF, Paiva JL, Song TW and Pinto JM. (2009) ‘A systemic approach for optimal cooling tower operation’, Energy Conversion and Management, vol. 50, 2200–2209.

    Article  Google Scholar 

  • Dagdougui H., Ouammi A., Robba, M. and Sacile, R., (2011) ‘Thermal analysis and performance optimization of a solar water heater flat plate collector, application to Tétouan (Morocco)’, Renewable and Sustainable Energy Reviews, vol. 15(1), 630–638.

    Article  Google Scholar 

  • Dehghani S. and Mohammadi A.H. (2014) ‘Optimum dimension of geometric parameters of solar chimney power plants, A multi-objective optimization approach’, Solar Energy, vol. 105, 603–612.

    Article  Google Scholar 

  • Du Y., (2017) ‘Advanced thermal management of a solar cell by a nano coated heat pipe plate A thermal assessment’, Energy Conservation Management, vol. 134, 70–76.

    Article  Google Scholar 

  • Dunn P, Reay D. (1976) Heat Pipes, Pergamon Press, New York.

    Google Scholar 

  • El-Dessouky HTA, Al-Haddad A and Al-Juwayhel F. (1997) ‘A modified analysis of counter flow cooling towers’, ASME Journal of Heat Transfer, vol. 119(3), 617–626.

    Article  Google Scholar 

  • Elhabishi A. and Gryzagoridis J. (2016) ‘Optimizing flat plate solar collector geometry for a solar water heating system’, Domestic Use of Energy (DUE), International Conference, vol. (1–6).

    Google Scholar 

  • Esarte J, Bernardini A, Blanco JM and Sancibrian R. (2016) ‘Optimizing the design for a two phase cooling loop heat pipe, Part A, Numerical model, validation and application to a case study’, Applied Thermal Engineering, vol. 99, 892–904.

    Article  Google Scholar 

  • Esen M. and Esen H. (2005) ‘Experimental investigation of a two-phase closed thermosyphon solar water heater’, Solar Energy, vol. 79(5), 459–468.

    Article  MATH  Google Scholar 

  • Faghri A. Taylor and Francis (1995) Heat pipe science and technology, Washington.

    Google Scholar 

  • Fluri T.P., Pretorius J.P., Van Dyk C., Von Backström T.W., Kröger D.G. and Van Zijl, G.P.A.G. (2009) ‘Cost analysis of solar chimney power plants’, Solar Energy, vol. 83(2), 246–256.

    Article  Google Scholar 

  • Foli K., Okabe T., Olhofer M., Jin Y. and Sendhoff B. (2006) ‘Optimization of micro heat exchanger, CFD, analytical approach and multi objective evolutionary algorithms’, International Journal of Heat and Mass Transfer, vol. 49(5–6), 1090–1099.

    Article  MATH  Google Scholar 

  • Gholamalizadeh E. and Kim M.H. (2014) ‘Thermo-economic triple-objective optimization of a solar chimney power plant using genetic algorithms’, Energy, vol. 70, 204–211.

    Article  Google Scholar 

  • Gu H., Wang H. Gu Y. and Yao J. (2016) ‘A numerical study on the mechanism and optimization of wind-break structures for indirect air-cooling towers’, Energy conversion and management, vol. 108, 43–49.

    Article  Google Scholar 

  • Gunerhan H. and Hepbasli A. (2007) ‘Exergetic modeling and performance evaluation of solar water heating systems for building applications’, Energy and Buildings, vol. 39(5), 509–516.

    Article  Google Scholar 

  • Guo S, Duan F, Tang H, Lim SC and Yip MS. (2014) ‘Multi-objective optimization for centrifugal compressor of mini turbojet engine’, Aerospace Science and Technology, vol. 39, 414–425.

    Article  Google Scholar 

  • Gupta M.K. and Kaushik S.C. (2008) ‘Exergetic performance evaluation and parametric studies of solar air heater’, Energy, vol. 33(11), 1691–1702.

    Article  Google Scholar 

  • Hajabdollahi Z. and Hajabdollahi H. (2017) ‘Thermo-economic modeling and multi objective optimization of solar water heater using flat plate collectors’, Solar Energy, vol. 155, 191–202.

    Article  Google Scholar 

  • Hamdan M.O. (2011), ‘Analysis of a solar chimney power plant in the Arabian Gulf region’, Renewable Energy, vol. 36(10), 2593–2598.

    Article  Google Scholar 

  • Hobbi A. and Siddiqui K. (2009) ‘Optimal design of a forced circulation solar water heating system for a residential unit in cold climate using TRNSYS’, Solar Energy, vol. 83(5), 700–714.

    Article  Google Scholar 

  • Husain A. and Kim K.Y. (2008a) ‘Optimization of a microchannel heat sink with temperature dependent fluid properties’, Applied thermal engineering, vol. 28 (8–9), 1101–1107.

    Article  Google Scholar 

  • Husain A. and Kim K.Y. (2008b) ‘Shape optimization of micro-channel heat sink for microelectronic cooling’, IEEE Transactions on Components and Packaging Technologies, vol. 31(2), 322–330.

    Article  Google Scholar 

  • Husain, A., & Kim, K. Y. (2008c). Multiobjective optimization of a microchannel heat sink using evolutionary algorithm. Journal of Heat Transfer, 130(11), 114505.

    Article  Google Scholar 

  • Husain A. and Kim K.Y. (2010) ‘Enhanced multi objective optimization of a microchannel heat sink through evolutionary algorithm coupled with multiple surrogate models’, Applied Thermal Engineering, vol.30(13), 1683–1691.

    Article  Google Scholar 

  • Hussein H.M.S. (2003) ‘Optimization of a natural circulation two phase closed thermosyphon flat plate solar water heater’, Energy Conversion and Management, vol. 44(14), 2341–2352.

    Google Scholar 

  • Jaisankar S., Radhakrishnan T.K. and Sheeba K.N. (2009) ‘Experimental studies on heat transfer and friction factor characteristics of thermo syphon solar water heater system fitted with spacer at the trailing edge of twisted tapes’, Applied Thermal Engineering, vol. 29(5–6), 1224–1231.

    Google Scholar 

  • Jalilian M, Kargarsharifabad H, Godarzi AA, Ghofrani A. and Shafii MB. (2016) ‘Simulation and optimization of pulsating heat pipe flat plate solar collectors using neural networks and genetic algorithm, a semi-experimental investigation’, Clean Technology Environment, vol. 18, 2251–2264.

    Google Scholar 

  • Jeong MJ, Kobayashi T and Yoshimura S. (2007), ‘Multidimensional visualization and clustering for multi objective optimization of artificial satellite heat pipe design’, Journal of Mechanical Science and Technology, vol. 21, 1964–1972.

    Article  Google Scholar 

  • Jeyadevi S., Manikumar R., Gayathri P., Mahalakshmi B. and Seethalakshmi M. (2012), ‘Optimization of solar air heater using differential evolution’, Third International Conference on Computing Communication & Networking Technologies (ICCCNT), vol. (1–7).

    Google Scholar 

  • Jin G.Y., Cai W.J., Lu L., Lee E.L. and Chiang A. (2007) ‘A simplified modeling of mechanical cooling tower for control and optimization of HVAC systems’, Energy conversion and management, vol. 48(2), 355–365.

    Article  Google Scholar 

  • Jokar A, Godarzi AA, Saber M and Shafii MB (2016) ‘Simulation and optimization of a pulsating heat pipe using artificial neural network and genetic algorithm’, Heat Mass Transfer, vol. 52, 2437–2445.

    Article  Google Scholar 

  • Karmare S.V. and Tikekar A.N. (2010) ‘Analysis of fluid flow and heat transfer in a rib grit roughened surface solar air heater using CFD’, Solar Energy, vol. 84(3), 409–417.

    Article  Google Scholar 

  • Kasaeian A., Ghalamchi M. and Ghalamchi M. (2014) ‘Simulation and optimization of geometric parameters of a solar chimney in Tehran’, Energy Conversion and Management, vol. 83, 28–34.

    Article  Google Scholar 

  • Khan W.A., Culham J.R., and Yovanovich M.M. (2009) ‘Optimization of microchannel heat sinks using entropy generation minimization method’, IEEE Transactions on Components and Packaging Technologies, vol. 32, 243–251.

    Article  Google Scholar 

  • Khan, W. A., Yovanovich, M. M., & Culham, J. R. (2006, March). Optimization of microchannel heat sinks using entropy generation minimization method. In Twenty-Second Annual IEEE Semiconductor Thermal Measurement and Management Symposium (pp. 78–86). IEEE.

    Google Scholar 

  • Kim SJ, Seo JK, Do KH., (2003) ‘Analytical and experimental investigation on the operational characteristics and the thermal optimization of a miniature heat pipe with a grooved wick structure’, International Journal of Heat and Mass Transfer, vol. 46, 2051–2063.

    Article  Google Scholar 

  • Kintner-Meyer M, Emery AF (1995) ‘Cost-optimal design for cooling towers’, ASHRAE Journal, vol. 37(4), 46–55.

    Google Scholar 

  • Kintner-Meyer M. and Emery AF. (1994) ‘Cost-optimal analysis of cooling towers’, ASHRAE Transactions, vol. 100, 92–101.

    Google Scholar 

  • Kiseev VM, Vlassov V and Muraoka I., (2010) ‘Experimental optimization of capillary structured for loop heat pipes and heat switches’, Applied Thermal Engineering, vol. 30, 1312–1319.

    Article  MATH  Google Scholar 

  • Kiseev VM, Vlassov VV, Muraoka I. (2010) ‘Optimization of capillary structures for inverted meniscus evaporators of loop heat pipes and heat switches,’ International Journal of Heat and Mass Transfer, vol. 53, 2143–2148.

    Article  MATH  Google Scholar 

  • Kloppers J.C. and Kröger D.G., (2004) ‘Cost optimization of cooling tower geometry’, Engineering Optimization, vol. 36(5), 575–584.

    Google Scholar 

  • Kröger, D. G. (2004). Air-cooled heat exchangers and cooling towers (Vol. 1). PennWell Books.

    Google Scholar 

  • Kulkarni G.N., Kedare S.B. and Bandyopadhyay S. (2007) ‘Determination of design space and optimization of solar water heating systems’, Solar Energy, vol. 81(8), 958–968.

    Article  Google Scholar 

  • Kulkarni G.N., Kedare S.B. and Bandyopadhyay S. (2009) ‘Optimization of solar water heating systems through water replenishment’, Energy Conversion and Management, vol. 50(3), 837–846.

    Article  Google Scholar 

  • Kumar S. and Saini R.P. (2009) ‘CFD based performance analysis of a solar air heater duct provided with artificial roughness’, Renewable Energy, vol. 34(5), 1285–1291.

    Google Scholar 

  • Kumar, A. and Kim M.H. (2014) ‘Numerical optimization of solar air heaters having different types of roughness shapes on the heated plate Technical note’, Energy, vol. 72, 731–738.

    Article  Google Scholar 

  • Larbi S., Bouhdjar A. and Chergui T. (2010) ‘Performance analysis of a solar chimney power plant in the southwestern region of Algeria’, Renewable and Sustainable Energy Reviews, vol. 14(1), 470–477.

    Article  Google Scholar 

  • Layek A., Saini J.S. and Solanki S.C. (2007) ‘Second law optimization of a solar air heater having chamfered rib groove roughness on absorber plate’, Renewable Energy, vol. 32(12), 1967–1980.

    Google Scholar 

  • Leng C., Wang X.D., Wang T.H. and Yan W.M. (2015) ‘Multi-parameter optimization of flow and heat transfer for a novel double-layered micro channel heat sink’, International Journal of Heat and Mass Transfer, vol. 84, 359–369.

    Google Scholar 

  • Li J. and Peterson G.P., (2007) ‘3-Dimensional numerical optimization of silicon based high performance parallel microchannel heat sink with liquid flow’, International Journal of Heat and Mass Transfer, vol. 50(15–16), 2895–2904.

    Article  MATH  Google Scholar 

  • Li J., Guo H. and Huang S. (2016) ‘Power generation quality analysis and geometric optimization for solar chimney power plants’, Solar Energy, vol. 139, 228–237.

    Article  Google Scholar 

  • Liang TS. and Hung YM. (2010) ‘Experimental investigation of thermal performance and optimization of heat sink U-shape heat pipes’, Energy Conversation Management, vol. 51, 2109–2116.

    Google Scholar 

  • Lima J.B.A., Prado R.T. and Taborianski V.M. (2006) ‘Optimization of tank and flat-plate collector of solar water heating system for single-family households to assure economic efficiency through the TRNSYS program’, Renewable Energy, vol. 31(10), 1581–1595.

    Article  Google Scholar 

  • Liu D. and Garimella S.V. (2003) ‘Analysis and optimization of the thermal performance of microchannel heat sinks’, International Electronic Packaging Technical Conference and Exhibition, ASME American Society of Mechanical Engineers, vol. 557–565.

    Google Scholar 

  • Maheshkumar P. and Muraleedharan C. (2011) ‘Minimization of entropy generation in flat heat pipe’. International Journal of Heat and Mass Transfer, vol. 54, 645–648.

    Google Scholar 

  • Mattingly JP. (1996) Elements of Gas Turbine Propulsion, McGraw-Hill, New York.

    Google Scholar 

  • Merkel F. Verdunstungshuhlung.(1925) ‘Zeitschrift des Vereines Deutscher Ingenieure(VDI)’, vol. 70, 123–128.

    Google Scholar 

  • Mittal M.K. and Varshney L. (2006) ‘Optimal thermo hydraulic performance of a wire mesh packed solar air heater’, Solar Energy, vol. 80(9), 1112–1120.

    Article  Google Scholar 

  • Mohiuddin AKM, Kant /K. (1996a) ’Knowledge base for the systematic design of wet cooling towers part II, fill and other design parameters.’ International Journal of Refrigeration, vol. 19(1), 52–60.

    Article  Google Scholar 

  • Mohiuddin AKM, Kant K. (1996b) ‘Knowledge base for the systematic design of wet cooling towers part I, selection and tower characteristics’, International Journal of Refrigeration, vol. 19(1), 43–51.

    Google Scholar 

  • Mohsen M.S., Al-Ghandoor A. and Al-Hinti I. (2009) ‘Thermal analysis of compact solar water heater under local climatic conditions’, International Communications in Heat and Mass Transfer, vol. 36(9), 962–968.

    Google Scholar 

  • Najjar YSH, Balawneh IAI. (2015) ‘Optimization of gas turbines for sustainable turbojet propulsion’ Propulsion and Power Research, vol. 4(2), 114–121.

    Article  Google Scholar 

  • Najmi M., Nazari A., Mansouri H. and Zahedi G. (2012) ‘Feasibility study on optimization of a typical solar chimney power plant’, Heat and Mass Transfer, vol. 48(3), 475–485.

    Article  Google Scholar 

  • Naphon P. (2005) ‘On the performance and entropy generation of the double pass solar air heater with longitudinal fins’, Renewable Energy, vol. 30(9), 1345–1357

    Article  Google Scholar 

  • Nariman-Zadeh N, Atashkari K, Jamali A, Pilechi A, Yao X. (2005) ‘Inverse modelling of multi objective thermodynamically optimized turbojet engines using GMDH type neural networks and evolutionary algorithms’, Engineering Optimization, vol. 37(5), 437–462.

    Google Scholar 

  • Noori F, Gorji M, Kazemi A, Nemati H. (2015) ‘Thermodynamic optimization of ideal turbojet with afterburner engines using non-dominated sorting genetic algorithm’, II - Journal of Aerospace Engineering, vol. 224, 1285–1296.

    Article  Google Scholar 

  • Nwosu N.P. (2010) ‘Employing exergy optimized pin fins in the design of an absorber in a solar air heater’, Energy, vol. 35(2), 571–575.

    Article  MathSciNet  Google Scholar 

  • Pasumarthi N. and Sherif S.A. (1998) ‘Experimental and theoretical performance of a demonstration solar chimney model Part II, experimental and theoretical results and economic analysis’, International Journal of Energy Research, vol. 22(5), 443–461.

    Article  Google Scholar 

  • Patel V.K. (2018) ‘An efficient optimization and comparative analysis of ammonia and methanol heat pipe for satellite application’, Energy Conversion and Management, vol. 165, 382–395.

    Article  Google Scholar 

  • Patel VK, Savsani VJ, Mudgal A. (2018) ‘Efficiency, thrust, and fuel consumption optimization of a subsonic/sonic turbojet engine’, Energy, vol. 144, 992–1002.

    Article  Google Scholar 

  • Peles Y., Koşar A., Mishra C., Kuo C.J. and Schneider B. (2005) ‘Forced convective heat transfer across a pin fin micro heat sink’, International Journal of Heat and Mass Transfer, vol. 48(17), 3615–3627.

    Article  MATH  Google Scholar 

  • Ponce-Ortega JM, Serna-González M, Jiménez-Gutiérrez A (2010) ‘Optimization model for re-circulating cooling water systems’, Computers and Chemical Engineering, vol. 34, 177–195

    Article  Google Scholar 

  • Pottler K., Sippel C.M., Beck A. and Fricke J. (1999) ‘Optimized finned absorber geometries for solar air heating collectors’, Solar Energy, vol. 67(1–3), 35–52.

    Article  Google Scholar 

  • Pourmehran O., Rahimi-Gorji M., Hatami M., Sahebi S.A.R. and Domairry G. (2015) ‘Numerical optimization of microchannel heat sink (MCHS) performance cooled by KKL based nano fluids in saturated porous medium’, Journal of the Taiwan Institute of Chemical Engineers, vol. 55, 49–68.

    Article  Google Scholar 

  • Prasad B.N., Kumar A. and Singh K.D.P. (2015) ‘Optimization of thermo hydraulic performance in three sides artificially roughened solar air heaters’, Solar Energy, vol. 111, 313–319.

    Google Scholar 

  • Pretorius J.P. and Kröger D.G. (2006) ‘Critical evaluation of solar chimney power plant performance’, Solar Energy, vol. 80(5), 535–544.

    Article  Google Scholar 

  • Pretorius J.P. and Kröger D.G. (2008) ‘Thermoeconomic optimization of a solar chimney power plant’, Journal of Solar Energy Engineering, vol. 130(2), 021015.

    Article  Google Scholar 

  • Qu W. and Mudawar I. (2002) ‘Experimental and numerical study of pressure drop and heat transfer in a single phase microchannel heat sink’, International Journal of Heat and Mass Transfer, vol. 45(12), 2549–2565.

    Article  Google Scholar 

  • Rahimi Gorji M., Pourmehran O., Hatami M. and Ganji D.D. (2015) ‘Statistical optimization of microchannel heat sink (MCHS) geometry cooled by different nano fluids using RSM analysis’, The European Physical Journal Plus, vol. 130(2), 22.

    Google Scholar 

  • Rao R.V. and Patel V.K., (2011), ‘Optimization of mechanical draft counter flow wet-cooling tower using artificial bee colony algorithm’, Energy Conversion and Management, vol. 52(7), 2611–2622.

    Google Scholar 

  • Rao R.V., More K.C., Taler J. and Ocłoń P. (2016) ‘Dimensional optimization of a micro- channel heat sink using Jaya algorithm’, Applied Thermal Engineering, vol. 103, 572–582.

    Article  Google Scholar 

  • Rao RV, More KC. (2015) ‘Optimal design of the heat pipe using TLBO (teaching-learning- based optimization) algorithm’, Energy, vol. 80, 535–544.

    Article  Google Scholar 

  • Reay D, Kew P., Butterwoith-Heinemann Oxford (2006) ‘Heat pipes theory, design and applications’.

    Google Scholar 

  • Roper CS. (2010) ‘Multi-objective optimization for design of multifunctional sandwich panel heat pipes with micro-architected truss cores’, International journal of heat and fluid flow, vol. 32, 239–248

    Google Scholar 

  • Rubio-Castro E., Serna-González M., Ponce-Ortega J.M. and Morales-Cabrera, M.A. (2011) ‘Optimization of mechanical draft counter flow wet-cooling towers using a rigorous model’, Applied Thermal Engineering, vol. 31(16), 3615–3628.

    Article  Google Scholar 

  • Serna-González M., Ponce-Ortega J.M. and Jiménez-Gutiérrez A. (2010) ‘MINLP optimization of mechanical draft counter flow wet-cooling towers’, Chemical Engineering Research and Design, vol. 88(5–6), 614–625.

    Article  Google Scholar 

  • Shariah A. and Shalabi B. (1997) ‘Optimal design for a thermo syphon solar water heater.’ Renewable Energy, vol. 11(3), 351–361.

    Article  Google Scholar 

  • Shariah A., Al-Akhras M.A. and Al-Omari I.A. (2002) ‘Optimizing the tilt angle of solar collectors’, Renewable Energy, vol. 4, 587–598.

    Article  Google Scholar 

  • Shariah A.M. and Löf G.O.G. (1996) ‘The optimization of tank volume to collector-area ratio for a thermosyphon solar water heater’, Renewable Energy, vol. 7(3), 289–300.

    Article  Google Scholar 

  • Shariatzadeh O.J., Refahi A.H., Abolhassani S.S. and Rahmani M. (2015) ‘Modeling and optimization of a novel solar chimney cogeneration power plant combined with solid oxide electrolysis/fuel cell’, Energy Conversion and Management, vol. 105, 423–432.

    Article  Google Scholar 

  • Shi PZ, Chua KM, Stephan CK, Wong YM, Tan YM. (2006) ‘Design and performance optimization of miniature heat pipes in LTCC’, Journal of Physics, vol. 34, 142–147.

    Google Scholar 

  • Smrekar J, Oman J, Sirok B. (2006) ‘Improving the efficiency of natural draft cooling towers’, Energy Conversion and Management, vol. 47, 1086–1100.

    Article  Google Scholar 

  • Song JH, Zhang W, Li YQ, Yang ZW and Ming A. (2017) ‘Exergy analysis and parameter optimization of heat pipe receiver with integrated latent heat thermal energy storage for space station in charging process’, Applied Thermal Engineering, vol. 119, 304–311.

    Article  Google Scholar 

  • Sousa FL, Vlassov VV and Ramos FM. (2004) ‘Heat Pipe Design through generalized external optimization’, Heat Transfer Engineering, vol. 25, 34–45.

    Article  MATH  Google Scholar 

  • Söylemez M.S. (2001) ‘On the optimum sizing of cooling towers’, Energy Conversion and Management, vol. 42(7), 783–789.

    Article  Google Scholar 

  • Söylemez M.S. (2004) ‘On the optimum performance of forced draft counter flow cooling towers’, Energy Conversion and Management, vol. 45(15–16), 2335–2341.

    Google Scholar 

  • Sun X, Ling L, Liao S, Chu Y, Fan S and Mo Y. (2018) ‘A thermoelectric cooler coupled with a gravity assisted heat pipe, An analysis from heat pipe perspective’, Energy Conservation Management, vol. 155, 230–242.

    Google Scholar 

  • Tang Y, Xiang JH, Wan ZP, Zhou W and Wu L. (2010) ‘A novel miniaturized loop heat pipe’, Applied Thermal Engineering, vol. 30, 1152–1158.

    Article  Google Scholar 

  • Tavakolpour-Saleh AR, Nasib SAR, Sepasyan A and Hashemi SM. (2015) ‘Parametric and nonparametric system identification of an experimental turbojet engine’, Aerospace Science and Technology, vol. 43, 21–29.

    Article  Google Scholar 

  • Tiari S, Mahdavi M, Qiu S. (2017) ‘Experimental study of a latent heat thermal energy storage system assisted by a heat pipe network’, Energy Conversion and Management, vol. 153, 362–373.

    Article  Google Scholar 

  • Tingzhen M., Wei L., Guoling X., Yanbin X., Xuhu G. and Yuan P. (2008) ‘Numerical simulation of the solar chimney power plant systems coupled with turbine’, Renewable Energy, vol. 33(5), 897–905.

    Article  Google Scholar 

  • Turan O. (2012) ‘Exergetic effects of some design parameters on the small turbojet engine for unmanned air vehicle applications’, Energy, vol. 46(1), 51–61.

    Article  Google Scholar 

  • Vafai K. and Zhu L. (1999) ‘Analysis of two-layered micro-channel heat sink concept in electronic cooling’, International Journal of Heat and Mass Transfer, vol. 42(12), 2287–2297.

    Article  Google Scholar 

  • Varun and Siddhartha (2010) ‘Thermal performance optimization of a flat plate solar air heater using genetic algorithm’, Applied Energy, vol. 87(5), 1793–1799.

    Article  Google Scholar 

  • Varun Saini RP, Singal SK (2008) ‘Investigation of thermal performance of solar air heater having roughness elements as a combination of inclined and transverse ribs on the absorber plate’, Renew able Energy, vol. 33, 1398–405.

    Article  Google Scholar 

  • Vlassov VV, Sousa FL and Takahashi WK (2006) ‘Comprehensive optimization of a heat pipe radiator assembly filled with ammonia or acetone, International Journal of Heat and Mass Transfer, vol. 49, 4584–4595.

    Google Scholar 

  • Sousa FL, Vlassov VV and Ramos FM. (2004) ‘Generalized external optimization: An application in heat pipe design’, Applied Mathematical Modelling, vol. 28, 911–931.

    Google Scholar 

  • Walker WH, Lewis WK, McAdams WH and Gilliland ER. (1923) ‘Principles of chemical engineering’, Columbia, McGraw-Hill Inc.

    Google Scholar 

  • Wan Z, Wang X and Tang Y. (2012) ‘Condenser design optimization and operation characteristics of a novel miniature loop heat pipe’, Energy Conversion and Management, vol. 35, 35–42.

    Article  Google Scholar 

  • Wang Z.H., Wang X.D., Yan W.M., Duan Y.Y., Lee D.J. and Xu J.L. (2011) ‘Multi- parameters optimization for microchannel heat sink using inverse problem method’, International Journal of Heat and Mass Transfer, vol. 54(13–14), 2811–2819.

    Article  MATH  Google Scholar 

  • Wei X. and Joshi Y. (2003) ‘Optimization study of stacked micro channel heat sinks for microelectronic cooling’, IEEE transactions on components and packaging technologies, vol. 26(1), 55–61.

    Article  Google Scholar 

  • Wu XP, Mochizuki M, Saito Y, Nguyen T, Wuttijumnong V and Wu D. (2003) ‘Analyzing and modelling on optimized L-ratio of evaporator section to condenser section for micro heat pipe heat sinks’, Semiconductor Thermal Measurement and Management Symposium, IEEE Annual, pp. 185–190.

    Google Scholar 

  • Xu C., Wang Z., Li X. and Sun F. (2011) ‘Energy and exergy analysis of solar power tower plants’, Applied Thermal Engineering, vol. 31(17–18), 3904–3913.

    Google Scholar 

  • Xu G., Ming T., Pan Y., Meng F. and Zhou C. (2011) ‘Numerical analysis on the performance of solar chimney power plant system’, Energy Conversion and Management, vol. 52(2), 876–883.

    Article  Google Scholar 

  • Yadav, A.S. and Bhagoria, J.L., (2014) ‘A CFD based thermo-hydraulic performance analysis of an artificially roughened solar air heater having equilateral triangular sectioned rib roughness on the absorber plate’, International Journal of Heat and Mass Transfer, vol. 70, 1016–1039.

    Google Scholar 

  • Yaman K. and Arslan G. (2018) ‘Modeling, simulation, and optimization of a solar water heating system in different climate regions’, Journal of Renewable and Sustainable Energy, vol. 10(2), 023703.

    Article  Google Scholar 

  • Yang M., Yang X., Li X., Wang Z. and Wang P. (2014) ‘Design and optimization of a solar air heater with offset strip fin absorber plate’, Applied Energy, vol. 113, 1349–1362.

    Article  Google Scholar 

  • Yang X, Karamanoglu M, Luan T and Koziel S. (2014) ‘Mathematical modeling and parameter optimization of pulsating heat pipes’, Journal of Computer Science and Technology, vol. 5, 119–125.

    Google Scholar 

  • Zhai Z. and Fu S., (2006) ‘Improving cooling efficiency of dry-cooling towers under cross- wind conditions by using wind-break methods’, Applied Thermal Engineering, vol. 26(10), 1008–1017.

    Article  MathSciNet  Google Scholar 

  • Zhang C, Chen Y, Shi M and Peterson GP. (2009) ‘Optimization of heat pipe with axial “Ω”- shaped micro grooves based on a niched Pareto genetic algorithm (NPGA)’, Applied Thermal Engineering. vol. 29, 3340–3345.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek K. Patel .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, V.K., Savsani, V.J., Tawhid, M.A. (2019). Thermal Design and Optimization of Few Miscellaneous Systems. In: Thermal System Optimization. Springer, Cham. https://doi.org/10.1007/978-3-030-10477-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10477-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10476-4

  • Online ISBN: 978-3-030-10477-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics