Skip to main content

Characterization of the Optimal Bucket Order Problem Instances and Algorithms by Using Fuzzy Logic

  • Chapter
  • First Online:

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 377))

Abstract

The problem of aggregating several rankings in order to obtain a consensus ranking that generalizes them is an active field of research with several applications. The Optimal Bucket Order Problem (OBOP) is a rank aggregation problem where the resulting ranking may be partial, i.e. ties are allowed. Several algorithms have been proposed for OBOP. However, their performances with respect to the characteristics of the instances are not studied properly. This paper uses fuzzy logic in order to describe different aspects of OBOP instances (such as the number of items to be ranked, distribution of the precedences values, and the utopicity) and the performance of several OBOP algorithms. Based on this fuzzy characterization, several fuzzy relations between instance characteristics and the performance of the algorithms have been discovered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. J. ACM 55:5, 23:1–23:27 (2008)

    Article  MathSciNet  Google Scholar 

  2. Alcalá, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L., Herrera, F.: KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J. Mult. Valued Logic Soft Comput. 17, 255–287 (2010)

    Google Scholar 

  3. Aledo, J. A., Gámez, J. A., Molina, D., Rosete, A.: Consensus-based journal rankings: a complementary tool for bibliometric evaluation. J. Assoc. Inf. Sci. Technol. (2018). http://dx.doi.org/10.1002/asi.24040

  4. Aledo, J.A., Gámez, J.A., Rosete, A.: Approaching rank aggregation problems by using evolution strategies: the case of the optimal bucket order problem. European J. Oper. Res. (2018). http://dx.doi.org/10.1016/j.ejor.2018.04.031

  5. Aledo, J.A., Gámez, J.A., Molina, D.: Using extension sets to aggregate partial rankings in a flexible setting. Appl. Math. Comput. 290, 208–223 (2016)

    MathSciNet  Google Scholar 

  6. Aledo, J.A., Gámez, J.A., Rosete, A.: Utopia in the solution of the Bucket Order Problem. Decis. Support Syst. 97, 69–80 (2017)

    Article  Google Scholar 

  7. Ali, A., Meila, M.: Experiments with kemeny ranking: what works when? Math. Social Sci. 64, 28–40 (2012)

    Article  MathSciNet  Google Scholar 

  8. Bailey, R.W.: The number of weak orderings of a finite set. Soc. Choice Welf. 15(4), 559–562 (1998)

    Article  MathSciNet  Google Scholar 

  9. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York, NY (1981)

    Book  Google Scholar 

  10. Borda, J.: Memoire sur les Elections au Scrutin. Histoire de l’Academie Royal des Sciences (1781)

    Google Scholar 

  11. Ceruto, T., Lapeira, O., Rosete, A.: Quality measures for fuzzy predicates in conjunctive and disjunctive normal form. Ingeniería e Investigación 3(4), 63–69 (2014)

    Article  Google Scholar 

  12. Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

    Article  Google Scholar 

  13. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for the web. In: Proceedings of the 10th International Conference on World Wide Web, WWW ’01, pp. 13–22. ACM (2001)

    Google Scholar 

  14. Emerson, P.: The original Borda count and partial voting. Soc. Choice Welf. 40(2), 353–358 (2013)

    Article  MathSciNet  Google Scholar 

  15. Fagin, R., Kumar, R., Mahdian, M., Sivakumar, D., Vee, E.: Comparing and Aggregating Rankings with Ties. In: PODS 2004, pp. 47–58. ACM (2004)

    Google Scholar 

  16. Feng, J., Fang, Q., Ng, W.: Discovering bucket orders from full rankings. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 55–66. ACM (2008)

    Google Scholar 

  17. Fürnkranz, J., Hüllermeier, E.: Preference learning: an introduction. In: Fürnkranz, J., Hüllermeier, E. (eds.), Preference Learning, pp. 1–17. Springer (2011)

    Google Scholar 

  18. Gionis, A., Mannila, H., Puolamäki, K., Ukkonen, A.: Algorithms for discovering bucket orders from data. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’06, pp. 561–566. ACM (2006)

    Google Scholar 

  19. Hullermeier, E.: Does machine learning need fuzzy logic? Fuzzy Sets Syst. 281, 292–299 (2015)

    Article  MathSciNet  Google Scholar 

  20. Kemeny, J.L., Snell, J.G.: Mathematical Models in the Social Sciences. Blaisdell-New York (1962)

    Google Scholar 

  21. Kenkre, S., Khan, A., Pandit, V.: On Discovering bucket orders from preference data. In: Proceedings of the 2011 SIAM International Conference on Data Mining, pp. 872–883. SIAM (2011)

    Google Scholar 

  22. Mattei, N., Walsh, T.: PrefLib: A Library for Preferences http://www.preflib.org. In: Perny, P., Pirlot, M., Tsoukiàs, A. (eds.) 2003 Proceedings of Third International Conference on Algorithmic Decision Theory, ADT, pp. 259–270. Springer (2013)

    Google Scholar 

  23. Nápoles, G., Dikopoulou, Z., Papageorgiou, E., Bello, R., Vanhoof, K.: Prototypes construction from partial rankings to characterize the attractiveness of companies in Belgium. Appl. Soft Comput. 42, 276–289 (2016)

    Article  Google Scholar 

  24. Ukkonen, A., Puolamäki, K., Gionis, A., Mannila, H.: A randomized approximation algorithm for computing bucket orders. Inf. Process. Lett. 109(7), 356–359 (2009)

    Article  MathSciNet  Google Scholar 

  25. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan A. Aledo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aledo, J.A., Gámez, J.A., Lapeira, O., Rosete, A. (2019). Characterization of the Optimal Bucket Order Problem Instances and Algorithms by Using Fuzzy Logic. In: Bello, R., Falcon, R., Verdegay, J. (eds) Uncertainty Management with Fuzzy and Rough Sets. Studies in Fuzziness and Soft Computing, vol 377. Springer, Cham. https://doi.org/10.1007/978-3-030-10463-4_3

Download citation

Publish with us

Policies and ethics