Skip to main content

Genetic Fuzzy System for Automating Maritime Risk Assessment

  • Chapter
  • First Online:
Uncertainty Management with Fuzzy and Rough Sets

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 377))

Abstract

This chapter uses genetic fuzzy systems (GFS) to assess the risk level of maritime vessels transmitting Automatic Identification System (AIS) data. Previous risk assessment approaches based on fuzzy inference systems (FIS) relied on domain experts to specify the FIS membership functions as well as the fuzzy rule base (FRB), a burdensome and time-consuming process. This chapter aims to alleviate this burden by learning the membership functions and FRB for the FIS of an existing Risk Management Framework (RMF) directly from data. The proposed methodology is tested with four different case studies in maritime risk analysis. Each case study concerns a unique scenario involving a particular region: the Gulf of Guinea, the Strait of Malacca, the Northern Atlantic during a storm, and the Northern Atlantic during a period of calm seas. The experiments compare 14 GFS algorithms from the KEEL software package and evaluate the resulting FRBs according to their accuracy and interpretability. The results indicate that IVTURS, LogitBoost, and NSLV generate the most accurate rule bases while SGERD, GCCL, NSLV, and GBML each generate interpretable rule bases. Finally, IVTURS, NSLV, and GBML algorithms offer a reasonable compromise between accuracy and interpretability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.site.uottawa.ca/~rfalc032/isfuros2017/.

  2. 2.

    https://www.nodc.noaa.gov/woce/woce_v3/wocedata_1/woce-uot/document/wmocode.htm.

  3. 3.

    https://www.tc.gc.ca/eng/marinesafety/tp-tp14070-3587.htm.

  4. 4.

    https://www.orbcomm.com/.

  5. 5.

    ftp://polar.ncep.noaa.gov/pub/history/waves.

  6. 6.

    https://www.icc-ccs.org/.

  7. 7.

    https://github.com/SCI2SUGR/KEEL checked out on 01/05/2018.

References

  1. Abielmona, R.: Tackling big data in maritime domain awareness. Vanguard, 42–43 (2013)

    Google Scholar 

  2. Falcon, R., Abielmona, R., Nayak, A.: An evolving risk management framework for wireless sensor networks. In: Proceedings of the 2011 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA), pp. 1–6, Ottawa, Canada (2011)

    Google Scholar 

  3. Falcon, R., Abielmona, R.: A response-aware risk management framework for search-and-rescue operations. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1540–1547, Brisbane, Australia (2012)

    Google Scholar 

  4. Alcalá-Fdez, J., Sánchez, L., García, S., del Jesus, M.J., Ventura, S., Garrell, J.M., Otero, J., Romero, C., Bacardit, J., Rivas, V.M., Fernández, J.C., Herrera, F.: Keel: a software tool to assess evolutionary algorithms for data mining problems. Soft Comput. 13(3), 307–318 (2009)

    Article  Google Scholar 

  5. International Maritime Organization: Guidelines for Formal Safety Assessment (FSA) for use in the IMO Rule-Making Process (2002)

    Google Scholar 

  6. International Association of Classification Societies: A guide to risk assessment in ship operations (2012)

    Google Scholar 

  7. Falcon, R., Desjardins, B., Abielmona, R., Petriu, E.: Context-driven dynamic risk management for maritime domain awareness. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8. IEEE (2016)

    Google Scholar 

  8. Friedman, N.: The Naval Institute Guide to World Naval Weapon Systems. Naval Institute Press (2006)

    Google Scholar 

  9. Moore, K.E.: Predictive analysis for naval deployment activities. PANDA BAA, 05-44 (2005)

    Google Scholar 

  10. Lim, I., Jau, F.: Comprehensive maritime domain awareness: an idea whose time has come? In: Defence, Terrorism and Security, Globalisation and International Trade (2007)

    Google Scholar 

  11. Mamdani, E.H.: Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Synthesis

    Google Scholar 

  12. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. SMC-15(1), 116–132 (1985)

    Article  Google Scholar 

  13. Karr, C.: Genetic algorithms for fuzzy controllers. AI Expert 6(2), 26–33 (1991)

    Google Scholar 

  14. Valenzuela-Rendón, M.: The Fuzzy Classifier System: a Classifier System for Continuously Varying Variables (1991)

    Google Scholar 

  15. Herrera, F., Magdalena, L.: Genetic Fuzzy Systems: A Tutorial, vol. 13, pp. 93–121. Tatra Mountains Mathematical Publications (1997)

    Google Scholar 

  16. Thrift, P.R.: Fuzzy Logic Synthesis with Genetic Algorithms (1991)

    Google Scholar 

  17. Herrera, F.: Genetic fuzzy systems: taxonomy, current research trends and prospects. Evol. Intell. 1(1), 27–46 (2008)

    Article  Google Scholar 

  18. Dong, W., Huang, Z., Ji, L., Duan, H.: A genetic fuzzy system for unstable angina risk assessment. BMC Med. Inform. Decis. Mak. 14, 12 (2014)

    Google Scholar 

  19. Nouei, M.T., Kamyad, A.V., Sarzaeem, M.R., Ghazalbash, S.: Developing a genetic fuzzy system for risk assessment of mortality after cardiac surgery. J. Med. Syst. 38(10), 102 (2014)

    Google Scholar 

  20. Aznarte, J.L., Alcalá-Fdez, J., Arauzo-Azofra, A., Benítez, J.M.: Financial time series forecasting with a bio-inspired fuzzy model. Expert Syst. Appl. 39(16), 12302–12309 (2012)

    Article  Google Scholar 

  21. Liu, C.-F., Yeh, C.-Y., Lee, S.-J.: Application of type-2 neuro-fuzzy modeling in stock price prediction. Appl. Soft Comput. 12(4), 1348–1358 (2012)

    Article  Google Scholar 

  22. Serdio, F., Lughofer, E., Pichler, K., Buchegger, T., Efendic, H.: Residual-based fault detection using soft computing techniques for condition monitoring at rolling mills. Inf. Sci. 259, 304–320 (2014)

    Article  Google Scholar 

  23. Ramli, A.A., Watada, J., Pedrycz, W.: A combination of genetic algorithm-based fuzzy c-means with a convex hull-based regression for real-time fuzzy switching regression analysis: application to industrial intelligent data analysis. IEEJ Trans. Electr. Electron. Eng. 9(1), 71–82 (2014)

    Google Scholar 

  24. Fernández, A., López, V., Del Jesus, M.J., Herrera, F.: Revisiting Evolutionary Fuzzy Systems: taxonomy, applications, new trends and challenges. Knowl. Based Syst. 80, 109–121 (2015)

    Article  Google Scholar 

  25. Bowditch, N.: Weather routing. In: The American Practical Navigator: An Epitome of Navigation, p. 896 (2002)

    Google Scholar 

  26. Falcon, R., Abielmona, R., Billings, S., Plachkov, A., Abbass, H.: Risk management with hard-soft data fusion in maritime domain awareness. In: The 2014 Seventh IEEE Symposium on Computational Intelligence for Security and Defense Applications (CISDA), pp. 1–8 (2014)

    Google Scholar 

  27. Calamur, K.: High traffic, high risk in the strait of Malacca. In: The Atlantic (2017)

    Google Scholar 

  28. World Meteorological Organization: Guide to GRIB (2003)

    Google Scholar 

  29. Gacto, M.J., Alcalá, R., Herrera, F.: Interpretability of linguistic fuzzy rule-based systems: an overview of interpretability measures. Inf. Sci. 181(20), 4340–4360 (2011)

    Article  Google Scholar 

  30. Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Ontario Centres of Excellence (OCE) and the National Sciences and Engineering Research Council of Canada (NSERC) for the project entitled “Big Data Analytics for the Maritime Internet of Things”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Teske .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Teske, A., Falcon, R., Abielmona, R., Petriu, E. (2019). Genetic Fuzzy System for Automating Maritime Risk Assessment. In: Bello, R., Falcon, R., Verdegay, J. (eds) Uncertainty Management with Fuzzy and Rough Sets. Studies in Fuzziness and Soft Computing, vol 377. Springer, Cham. https://doi.org/10.1007/978-3-030-10463-4_19

Download citation

Publish with us

Policies and ethics