Skip to main content

The Use of HPC on Volcanic Tephra Dispersion Operational Forecast System

  • Conference paper
  • First Online:
Book cover Supercomputing (ISUM 2018)

Abstract

High Performance Computing (HPC) was used to estimate the tephra dispersion forecast in an operational mode using the Popocatepetl volcano as base case. Currently it is not possible to forecast a volcanic eruption, which can occur at any time. In order to reduce the human intervention for obtaining immediate ash deposition information, the HPC was used to compute a wide spectrum of possible eruptions and dispersion scenarios; information obtained from previous eruptions and meteorological forecast was used to generate the possible scenarios. Results from the scenarios are displayed in a web page for consultation and decision-making when a real eruption occurs. This work shows the methodology approach used to forecast the tephra dispersion from a possible eruption, the computing strategy to reduce the processing time and a description of products displayed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rivera Tapia, J.A., Yáñez Santos, A., Cedillo Ramírez, L.: Emisión de ceniza volcánica y sus efectos. Ecosistemas 14(3), 107–115 (2005)

    Google Scholar 

  2. Jimenez-Escalona, J.C., Monsivais-Huertero, A., Avila-Razo, J.E.: Maps risk generations for volcanic ash monitoring using modis data and its application in risk maps for aviation hazard mitigation: case of study Popocatepetl Volcano (Mexico). In: 2016 IEEE International Conference on Geoscience and Remote Sensing Symposium (IGARSS), IEEE (2016)

    Google Scholar 

  3. Linares-Lopez, C.: Análisis granulométricos y modales en cenizas emitidas por el Volcán Popocatépetl de 1994 a 1998 (2001). http://132.248.9.195/pd2001/299833/Index.html

  4. Martin-Del Pozzo, A.L., Gonzalez-Moran, T., Espinasa-Perea, R., Butron, M.A., Reyes, M.: Characterization of the recent ash emissions at Popocatepetl Volcano, Mexico. J. Volcanol. Geoth. Res. 170, 61–75 (2008)

    Article  Google Scholar 

  5. Martin-Del Pozzo, A.L., Rodríguez, A., Portocarrero, J.: Reconstructing 800 years of historical eruptive activity at Popocatepetl Volcano, Mexico. Bull. Volcanol. 78, 1–13 (2016)

    Article  Google Scholar 

  6. Skamarock, W.C., et al.: A description of the advanced research WRF version 2 (No. NCAR/TN-468+ STR). National Center For Atmospheric Research Boulder Co Mesoscale and Microscale Meteorology Div. (2005)

    Google Scholar 

  7. Folch, A., Costa, A., Macedonio, G.: FALL3D: a computational model for transport and deposition of volcanic ash. Comput. Geosci. 35, 1334–1342 (2009)

    Article  Google Scholar 

  8. Brown, D., Brownrigg, R., Haley, M., Huang, W.: The NCAR Command Language (NCL) (version 6.0.0). UCAR/NCAR Computational and Information Systems Laboratory, Boulder, CO (2012). https://doi.org/10.5065/d6wd3xh5

  9. NOAA National Centers for Environmental Prediction (NCEP): NOAA/NCEP Global Forecast System (GFS) Atmospheric Model (2011). https://www.emc.ncep.noaa.gov/index.php?branch=GFS

  10. Thompson, G., Field, P.R., Rasmussen, R.M., Hall, W.D.: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: implementation of a new snow parameterization. Mon. Weather Rev. 136, 5095–5115 (2008)

    Article  Google Scholar 

  11. Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J., Clough, S.A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res.: Atmos. 102, 16663–16682 (1997)

    Article  Google Scholar 

  12. Chou, M.-D., Suarez, M.: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, vol. 3, 84 p. (1994). (NASA Center for Aerospace Information, 800 Elkridge Landing Rd., Linthicum Heights, MD 21090-2934). http://www.worldcat.org/title/efficient-thermal-infrared-radiation-parameterization-for-use-in-general-circulation-models/oclc/919970577

  13. Janić, Z.I.: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model. US Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, National Centers for Environmental Prediction (2001). https://repository.library.noaa.gov/view/noaa/11409

  14. Ek, M., et al.: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res.: Atmos. 108 (2003)

    Google Scholar 

  15. Mellor, G.L., Yamada, T.: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. 20, 851–875 (1982)

    Article  Google Scholar 

  16. Kain, J.S.: The Kain-Fritsch convective parameterization: an update. J. Appl. Meteorol. 43, 170–181 (2004)

    Article  Google Scholar 

  17. Skamarock, W.C., et al.: A description of the advanced research WRF version 2. National Center for Atmospheric Research Boulder Colorado Mesoscale and Microscale Meteorology Division (2005)

    Google Scholar 

  18. Costa, A., Macedonio, G., Folch, A.: A three-dimensional Eulerian model for transport and deposition of volcanic ashes. Earth Planet. Sci. Lett. 241, 634–647 (2006)

    Article  Google Scholar 

  19. Ganser, G.H.: A rational approach to drag prediction of spherical and nonspherical particles. Powder Technol. 77, 143–152 (1993)

    Article  Google Scholar 

  20. Granados, H.D., De la Cruz Reyna, S., Tilling, R.I.: The 1994–present eruption of popocatépetl volcano: background, current activity, and impacts. J. Volcanol. Geoth. Res. 1(170), 1–4 (2008)

    Google Scholar 

  21. Quezada-Reyes, A., Lesage, P., Valdés-González, C., Perrier, L.: An analysis of the seismic activity of Popocatepetl volcano, Mexico, associated with the eruptive period of December 2002 to February 2003: looking for precursors. Geol. Soc. Am. Spec. Pap. 498, 89–106 (2013)

    Google Scholar 

  22. Cross, J., Roberge, J., Jerram, D.: Constraining the degassing processes of Popocatépetl Volcano, Mexico: a vesicle size distribution and glass geochemistry study. J. Volcanol. Geoth. Res. 225, 81–95 (2012)

    Article  Google Scholar 

  23. Woodhouse, M., Hogg, A., Phillips, J., Sparks, R.: Interaction between volcanic plumes and wind during the 2010 Eyjafjallajökull eruption, Iceland. J. Geophys. Res.: Solid Earth 118, 92–109 (2013)

    Article  Google Scholar 

  24. Cornell, W., Carey, S., Sigurdsson, H.: Computer simulation of transport and deposition of the Campanian Y-5 ash. J. Volcanol. Geoth. Res. 17, 89–109 (1983)

    Article  Google Scholar 

Download references

Acknowledgement

The forecast system described above was carried out with the financial support from the Ministry of the Interior (Secretaría de Gobernación) through the Risk Management Office (Dirección General de Gestión de Riesgos) under the Fund for Natural Disaster Prevention (FOPREDEN) grant E.III.02. The final system was designed following needs explicitly expressed by the personnel of CENAPRED in order to have a tool focused in their needs for decision-making. The system is currently operated by the CENAPRED and issued to warn the Civil Defense as well as the Civil Aviation (Dirección General de Aviación Civil). NCEP NOAA, meteorological datasets. We thank to Luisa Molina for the proofreading of this text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustín García-Reynoso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

García-Reynoso, A., Zavala-Hidalgo, J., Delgado-Granados, H., Herrera-Moro, D.R. (2019). The Use of HPC on Volcanic Tephra Dispersion Operational Forecast System. In: Torres, M., Klapp, J., Gitler, I., Tchernykh, A. (eds) Supercomputing. ISUM 2018. Communications in Computer and Information Science, vol 948. Springer, Cham. https://doi.org/10.1007/978-3-030-10448-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10448-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10447-4

  • Online ISBN: 978-3-030-10448-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics