Skip to main content

Coupled and Generalized Thermoelasticity

  • Chapter
  • First Online:
Thermal Stresses—Advanced Theory and Applications

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 158))

  • 1702 Accesses

Abstract

A structure under thermal shock load, when the period of shock is of the same order of magnitude as the lowest natural frequency of the structure, should be analyzed through the coupled form of the energy and thermoelasticity equations. Analytical solutions of this class of problems are mathematically complex and are limited to those of an infinite body or a half-space, where the boundary conditions are simple. This chapter begins with the analytical solutions of a number of classical problems of coupled thermoelasticity for an infinite body, a half-space, and a layer. Coupled thermoelasticity problem for a thick cylinder is discussed when the inertia terms are ignored. The generalized thermoelasticity problems for a layer, based on the Green–Naghdi, Green–Lindsay, and the Lord–Shulman models are discussed, when the analytical solution in the space domain is found. The solution in the time domain is obtained by numerical inversion of Laplace transforms. The generalized thermoelasticity of thick cylinders and spheres, in a unified form, is discussed, and problems are solved analytically in the space domain, while the inversion of Laplace transforms are carried out by numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ignaczak J (1989) Generalized thermoelasticity and its applications. In: Hetnarski RB (ed) Thermal stresses III. Elsevier, Amsterdam

    Google Scholar 

  2. Nowacki W (1986) Thermoelasticity, 2nd edn. PWN-Polish Scientific Publishers, Pergamon Press, Warsaw, Oxford

    Google Scholar 

  3. Kovalenko AD (1969) Thermoelasticity: basic theory and application. Wolters-Noordhoff Groningen, The Netherlands

    MATH  Google Scholar 

  4. Nowacki W (1961) On some dynamic problems of thermoelasticity, contributed to the book Problems of continuum mechanics. SIAM, Philadelphia

    Google Scholar 

  5. Boley BA, Weiner JH (1960) Theory of thermal stresses. Wiley, New York

    MATH  Google Scholar 

  6. Bahar LY, Hetnarski RB (1978) State-space approach to thermoelasticity. J Therm Stress 1:135–145

    Article  Google Scholar 

  7. Bahar LY, Hetnarski RB (1979) Direct approach to thermoelasticity. J Therm Stress 2:135–147

    Article  Google Scholar 

  8. Bahar LY, Hetnarski RB (1979) Connection between the thermoelastic potential and the state-space approach of thermoelasticity. J Therm Stress 2:283–290

    Article  Google Scholar 

  9. Bahar LY, Hetnarski RB (1980) Coupled thermoelasticity of layered medium. J Therm Stress 3:141–152

    Article  Google Scholar 

  10. Sherief HH (2014) State-space approach to generalized thermoelasticity. In: Hetnarski RB (ed) Encyclopedia of thermal stresses, vol 8. Springer, Dordrecht, pp 4537–4545

    Chapter  Google Scholar 

  11. Sherief HH (1993) State-space formulation for generalized thermoelasticity with one relaxation time including heat sources. J Therm Stress 16:163–180

    Article  MathSciNet  Google Scholar 

  12. Ezzat MA, Othman MI, El-Karamany AS (2002) State-space approach to generalized thermo-viscoplasticity with two relaxation times. Int J Eng Sci 40:283–302

    Article  Google Scholar 

  13. Ezzat MA, Othman MI, El-Karamany AS (2002) State-space approach to two-dimensional generalized thermoelasticity with one relaxation time. J Therm Stress 25:295–316

    Article  Google Scholar 

  14. Samanta SC, Maishal RK (2009) A study on magneto-thermo-viscoplastic interactions in an elastic half-space subjectd to a temperature pulse, using state-space approach. J Therm Stress 32(3)

    Google Scholar 

  15. Uflyand YS (1965) Survey of articles on the applications of integral theorems in the theory of elasticity, Applied Mathematical Research Group, North Carolina State University, Raleigh, pp 20–23

    Google Scholar 

  16. Lebedev NN, Skalskaya IP, Uflyand YS (1968) Problems of mathematical physics. Prentice Hall, New Jersey, pp 337–338

    Google Scholar 

  17. Sneddon IN (1951) Fourier transforms. McGraw-Hill, New York

    MATH  Google Scholar 

  18. Jabbari M, Moradi A (2014) Exact solution for classic coupled thermoelasticity in cylindrical coordinates. In: Hetnarski RB (ed) Encyclopedia of thermal stresses, vol 3. Springer, Dordrecht, pp 1337–1353

    Chapter  Google Scholar 

  19. Jabbari M, Dehbani H (2014) Exact solution for classic coupled thermoelasticity in spherical coordinates. In: Hetnarski RB (ed) Encyclopedia of thermal stresses, vol 3. Springer, Dordrecht, pp 1353–1365

    Chapter  Google Scholar 

  20. Dillon OW Jr (1965) Thermoelasticity when the mechanical coupling parameter is unity. J Appl Mech, ASME 32:378–382

    Article  Google Scholar 

  21. Boley BA, Hetnarski RB (1968) Propagation of discontinuities in coupled thermoelastic problems. J Appl Mech, ASME 35:489–494

    Article  Google Scholar 

  22. Myshkina VV (1968) A coupled dynamic problem of thermoelasticity for a layer in the case of short intervals of time. Mechanics of solids. Allerton, New York, pp 103–106

    Google Scholar 

  23. Sherief HH, Anwar MN (1994) State-space approach to two-dimensional generalized thermoelasticity problems. J Therm Stress 17(4):567–590

    Article  MathSciNet  Google Scholar 

  24. Hetnarski RB (1969) The generalized D’Alembert solution to the coupled equations of thermoelasticity. In: Nowacki WK (ed) Progress in thermoelasticity, VIII European mechanics colloquium, Warsaw, 1967. PWN – Polish Scientific Publishers, Warsaw, pp 121–131

    Google Scholar 

  25. Agaryev VA (1963) The method of initial functions in two-dimensional problems of the theory of elasticity (in Russian). Isdatelstvo Akademii Nauk Ukrainskoi SSR, Kiev

    Google Scholar 

  26. Chandrasekharaiah DS (1998) Hyperbolic thermoelasticity, a review of recent literature. Appl Mech Rev 51:705–729

    Article  Google Scholar 

  27. Rossikhin YA, Shitikova MV (2009) D’Alembert’s solution in thermo-elasticity – impact of a rod against a heated barrier, Part I, a case of uncoupled strain and temperature fields. J Therm Stress 32(1–2)

    Article  Google Scholar 

  28. Rossikhin YA, Shitikova MV (2009) D’Alembert’s solution in thermo-elasticity – impact of a rod against a heated barrier, Part II, a case of coupled strain and temperature fields. J Therm Stress 32(3)

    Article  Google Scholar 

  29. Boley BA (1962) Discontinuities in integral-transform solution. Q Appl Math 19:273–284

    Article  MathSciNet  Google Scholar 

  30. Wagner P (1994) Fundamental matrix of the system of dynamic linear thermoelasticity. J Therm Stress 17(4):549–565

    Article  MathSciNet  Google Scholar 

  31. Ortner N, Wagner P (1992) On the fundamental solution of the operator of dynamic linear thermoelasticity. J Math Anal Appl 170:524–550

    Article  MathSciNet  Google Scholar 

  32. Hetnarski RB (1964) Solution of the coupled problem of thermoelasticity in the form of series of functions. Arch Mech Stosow 16:919–941

    MathSciNet  MATH  Google Scholar 

  33. Jakubowska M (1982) Kirchhoff’s formula for thermoelastic solid. J Therm Stress 5:127–144

    Article  MathSciNet  Google Scholar 

  34. Hetnarski RB (1964) Coupled thermoelastic problem for the half-space. Bull Acad Pol Sci Ser Sci Tech 12:49–57

    MATH  Google Scholar 

  35. Hetnarski RB (1975) An algorithm for generating some inverse Laplace transforms of exponential form. J Appl Math Phys ZAMP 26(2):249–253

    MathSciNet  MATH  Google Scholar 

  36. Hetnarski RB (1961) Coupled one-dimensional thermal shock problem for small times. Arch Mech Stosow 13:295–306

    MathSciNet  MATH  Google Scholar 

  37. Danilovskaya VI (1950) Thermal stresses in an elastic half-space arising after a sudden heating at its boundary [in Russian]. Prikl Math Mekh 14(3)

    Google Scholar 

  38. Mura T (1952) Thermal strains and stresses in transient state. Proc Sec Jpn Congr Appl Mech

    Google Scholar 

  39. Sternberg E, Chakravorty JG (1958) On inertia effects in a transient thermoelastic problem, Technical report No 2, Contract Nonr-562 (25), Brown University

    Google Scholar 

  40. Gosn AH, Sabbaghian M (1982) Quasi-static coupled problems of thermoelasticity for cylindrical regions. J Therm Stress 5(3–4):299–313

    Article  Google Scholar 

  41. Green AE, Naghdi PM (1991) A re-examination of the basic postulates of thermomechanics. Proc Roy Soc Lond Ser A 432:171–194

    Article  MathSciNet  Google Scholar 

  42. Green AE, Naghdi PM (1993) Thermoelasticity without energy dissipation. J Elast 31:189–208

    Article  MathSciNet  Google Scholar 

  43. Green AE, Naghdi PM (1992) On undamped heat waves in an elastic solid. J Therm Stress 15:253–264

    Article  MathSciNet  Google Scholar 

  44. Chandrasekharaiah DS (1996) A uniqueness theorem in the theory of thermoelasticity without energy dissipation. J Therm Stress 19:267–272

    Article  MathSciNet  Google Scholar 

  45. Chandrasekharaiah DS (1996) One-dimensional wave propagation in the linear theory of thermoelasticity without energy dissipation. J Therm Stress 19:695–710

    Article  Google Scholar 

  46. Chandrasekharaiah DS, Srinath KS (1997) Axisymmetric thermoelastic interactions without energy dissipation in an unbounded body with cylindrical cavity. J Elast 46:19–31

    Article  Google Scholar 

  47. Chandrasekharaiah DS, Srinath KS (1998) Thermoelastic interactions without energy dissipation due to a point heat source. J Elast 50:97–108

    Article  Google Scholar 

  48. Chandrasekharaiah DS (1997) Complete solutions in the theory of thermo-elasticity without energy dissipation. Mech Res Commun 24:625–630

    Article  MathSciNet  Google Scholar 

  49. Sharma JN, Chauhan RS (2001) Mechanical and thermal sources in a generalized thermoelastic half-space. J Therm Stress 24:651–675

    Article  Google Scholar 

  50. Li H, Dhaliwal RS (1996) Thermal shock problem in thermoelasticity without energy dissipation. Indian J Pure App Math 27:85–101

    Google Scholar 

  51. Taheri H, Fariborz S, Eslami MR (2004) Thermoelasticity solution of a layer using the Green-Naghdi model. J Therm Stress 27(8):691–704

    Article  Google Scholar 

  52. Durbin F (1974) Numerical inversion of Laplace transforms: an efficient improvement to Dubner and abate’s method. Comput J 17:371–376

    Article  MathSciNet  Google Scholar 

  53. Lord HW, Shulman Y (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15:299–309

    Article  Google Scholar 

  54. Ignaczak J, Hetnarski RB (2014) In: Hetnarski RB (ed) Generalized thermoasticity, mathematical formulation, encyclopedia of thermal stresses. Springer, Dordrecht, pp 1974–1986

    Google Scholar 

  55. Green AE, Lindsay KE (1972) Thermoelasticity. J Elast 2:1–7

    Article  Google Scholar 

  56. Chen J, Dargush GF (1995) Boundary element method for dynamic poroelastic and thermoelastic analysis. Int J Solids Struct 32(15):2257–2278

    Article  Google Scholar 

  57. Chen H, Lin H (1995) Study of transient coupled thermoelastic problems with relaxation times. Trans ASME, J Appl Mech 62:208–215

    Article  Google Scholar 

  58. Hosseini Tehrani P, Eslami MR (2000) Boundary element analysis of coupled thermoelasticity with relaxation time in finite domain. J AIAA 38(3):534–541

    Article  Google Scholar 

  59. Bagri A, Eslami MR (2004) Generalized coupled thermoelasticity of disks based on the Lord-Shulman model. J Therm Stress 27(8):691–704

    Article  Google Scholar 

  60. Ocłoń P, Łopata S (2014) Hyperbolic heat conduction equation. In: Hetnarski RB (ed) Encyclopedia of thermal stresses, vol 5. Springer, Dordrecht, pp 2332–2342

    Chapter  Google Scholar 

  61. Bagri A, Taheri H, Eslami MR, Fariborz S (2006) Generalized coupled thermoelasticity of a layer. J Therm Stress 29(4):359–370

    Article  Google Scholar 

  62. Honig G, Hirdes U (1984) A method for the numerical inversion of Laplace transforms. J Comput Appl Math 10:113–132

    Article  MathSciNet  Google Scholar 

  63. Hosseini Tehrani P, Eslami MR (2003) Boundary element analysis of finite domains under thermal and mechanical shock with the Lord–Shulman theory. J Strain Anal 38(1):53–64

    Article  Google Scholar 

  64. Bagri A, Eslami MR (2007) A unified generalized thermoelasticity formulation: application to thick functionally graded cylinders. J Therm Stress, special issue devoted to the 70th Birthday of Józef Ignaczak 30(9 and 10):911–930

    Google Scholar 

  65. Bagri A, Eslami MR (2007) A unified generalized thermoelasticity: solution for cylinders and spheres. Int J Mech Sci 49:1325–1335

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard B. Hetnarski .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hetnarski, R.B., Eslami, M.R. (2019). Coupled and Generalized Thermoelasticity. In: Thermal Stresses—Advanced Theory and Applications. Solid Mechanics and Its Applications, vol 158. Springer, Cham. https://doi.org/10.1007/978-3-030-10436-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10436-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10435-1

  • Online ISBN: 978-3-030-10436-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics