Skip to main content

Thermodynamics of Elastic Continuum

  • Chapter
  • First Online:
Thermal Stresses—Advanced Theory and Applications

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 158))

  • 1672 Accesses

Abstract

A new presentation of the thermodynamic principles for solid elastic continuum is given. The first and the second laws of thermodynamics in variational form are stated, and the variational principle of thermodynamics in terms of entropy follows. The principle of thermoelasticity linearization is discussed and the classical, coupled, as well as the generalized (with second sound effect) theories are derived using the linearization technique. A unique generalized formulation, considering Lord–Shulman, Green–Lindsay, and Green–Naghdi models, for the heterogeneous anisotropic material is presented, where the formulation is properly reduced to those of isotropic material. The uniqueness theorem and the variational form of the generalized thermoelasticity are derived, and the exposition of the Maxwell reciprocity theorem concludes the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Obert EF (1960) Concepts of thermodynamics. McGraw-Hill, New York

    Google Scholar 

  2. Fung YC (1965) Foundations of solid mechanics. Prentice Hall, Englewood Cliffs

    Google Scholar 

  3. Clausius R (1865) On different forms of the fundamental equations of the mechanical theory of heat and their convenience for application. Phys (Leipz) Ser 125(2):313

    Google Scholar 

  4. Rankine WJM (1855) On the hypothesis of molecular vortices, or centrifugal theory of elasticity, and its connexion with the theory of heat. Philos Mag Ser 67(4):354–363, November 1855; 68:411–420, December 1855

    Google Scholar 

  5. Rankine WJM (1869) On the thermal energy of molecular vortices. Trans R Soc Edinb 25:557–566

    Article  MATH  Google Scholar 

  6. Müller I (2014) Thermodynamics: the nineteenth-century history. In: Hetnarski RB (ed) Encyclopedia of thermal stresses, vol 10. Springer, Dordrecht, pp 5593–5608

    Chapter  Google Scholar 

  7. Shillor M (2014) Thermoelastic stresses, variational methods. In: Hetnarski RB (ed) Encyclopedia of thermal stresses, vol 10. Springer, Dordrecht, pp 5775–5779

    Chapter  Google Scholar 

  8. Maugin GA (2014) Classical thermodynamics. In: Hetnarski RB (ed) Encyclopedia of thermal stresses, vol 2. Springer, Dordrecht, pp 588–591

    Chapter  Google Scholar 

  9. Maugin GA (2014) Thermomechanics of continua (or continuum thermomechanics). In: Hetnarski RB (ed) Encyclopedia of thermal stresses, vol 11. Springer, Dordrecht, pp 6033–6037

    Chapter  Google Scholar 

  10. Takeuti Y (1979) Foundations for coupled thermoelasticity. J Therm Stress 2:323–339

    Article  Google Scholar 

  11. Takeuti Y (1978) A treatise on the theory of thermal stresses, vols 1–2. University of Osaka Prefecture

    Google Scholar 

  12. Parkus H (1976) Thermoelasticity, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  13. Melan E, Parkus H (1953) Wärmespannungen infolge stationärer Temperaturfelder. Springer, Vienna

    Google Scholar 

  14. Parkus H (1959) Instationäre Wärmespannungen. Springer, Vienna

    Book  MATH  Google Scholar 

  15. Truesdell C, Noll W (1965) The non-linear field theories of mechanics, encyclopedia of physics, vol III/3. Springer, Berlin

    Chapter  Google Scholar 

  16. Ignaczak J, Ostoja-Starzewski M (2010) Thermoelasticity with finite wave speeds. Oxford University Press, Oxford

    MATH  Google Scholar 

  17. Straughan B (2011) Heat waves. Springer, New York

    Book  MATH  Google Scholar 

  18. Lord HW, Shulman Y (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15:299–309

    Article  MATH  Google Scholar 

  19. Boley BA, Weiner JH (1960) Theory of thermal stresses. Wiley, New York

    MATH  Google Scholar 

  20. Chandrasekharaiah DC (1998) Hyperbolic thermoelasticity: a review of recent literature. Appl Mech Rev 51(12). Part 1:705–729

    Google Scholar 

  21. Müller I (1971) The coldness, a universal function in thermoelastic bodies. Arch Ration Mech Anal 41(5):319–332

    Article  MathSciNet  MATH  Google Scholar 

  22. Green AE, Laws N (1972) On the entropy production inequality. Arch Ration Mech Anal 45(1):47–53

    Article  MathSciNet  MATH  Google Scholar 

  23. Suhubi ES (1975) Thermoelastic solids. In: Eringen AC (ed) Continuum physics II. Academic, New York

    Google Scholar 

  24. Green AE, Lindsay KA (1972) Thermoelasticity. J Elast 2(1):1–7

    Article  MATH  Google Scholar 

  25. Ignaczak J (1981) Linear dynamic thermoelasticity: a survey. Shock Vib Dig 13(9):3–8

    Article  Google Scholar 

  26. Chandrasekharaiah DS (1986) Thermoelasticity with second sound: a review. Appl Mech Rev 39(3):355–376

    Article  MathSciNet  MATH  Google Scholar 

  27. Vedavarz A, Kumar S, Moallemi K (1991) Significance on non-Fourier heat waves in microscale conduction. In: Micromechanical sensors, actuators, and systems, ASME, DSC, vol 32, p 109

    Google Scholar 

  28. Kaminski W (1990) Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure. J Heat Transf 112:555–560

    Article  Google Scholar 

  29. Green AE, Naghdi PM (1993) Thermoelasticity without energy dissipation. J Elast 31:189–208

    Article  MathSciNet  MATH  Google Scholar 

  30. Green AE, Naghdi PM (1991) A re-examination of the basic postulate of thermomechanics. Proc R Soc N Y A432:171–194

    Article  MathSciNet  MATH  Google Scholar 

  31. Maxwell JC (1867) On the dynamical theory of gases. Philos Trans R Soc N Y 157:49–88

    Article  Google Scholar 

  32. Chester M (1963) Second sound in solids. Phys Rev 131:2013–2015

    Article  Google Scholar 

  33. Ignaczak J (1991) Domain of influence results in generalized thermoelasticity, a survey. Appl Mech Rev 44(9):375–382

    Article  MathSciNet  Google Scholar 

  34. Francis PH (1972) Thermomechanical effects in elastic wave propagation: a survey. J Sound Vib 21:181–192

    Article  MATH  Google Scholar 

  35. Bagri A, Eslami MR (2007) A unified generalized thermoelasticity formulation; application to thick functionally graded cylinders. J Therm Stress 30(9 and 10):911–930

    Article  Google Scholar 

  36. Bagri A, Eslami MR (2007) A unified generalized thermoelasticity: solution for cylinders and spheres. Int J Mech Sci 49:1325–1335

    Article  Google Scholar 

  37. Nowacki W (1975) In: Francis PH, Hetnarski RB (eds) Dynamic problems of thermoelasticity, English edn. Noordhoff International Publishing, Leyden

    MATH  Google Scholar 

  38. Ignaczak J (1978) A uniqueness theorem for stress-temperature equations of dynamic thermoelasticity. J Therm Stress 1(2):163–170

    Article  Google Scholar 

  39. Ignaczak J (1979) Uniqueness theorem in generalized thermoelasticity. J Therm Stress 2(2):171–176

    Article  Google Scholar 

  40. Bem Z (1982) Existance of a generalized solution in thermoelasticity with one relaxation time. J Therm Stress 5(2):195–206

    Article  MathSciNet  Google Scholar 

  41. Bem Z (1983) Existence of a generalized solution in thermoelasticity with two relaxation times, part II. J Therm Stress 6(2–4):281–299

    MathSciNet  Google Scholar 

  42. Ignaczak J (1982) A note on uniqueness in thermoelasticity with one relaxation time. J Therm Stress 5(3–4):257–264

    Article  MathSciNet  Google Scholar 

  43. Sherief HH, Dhaliwal RS (1980) A uniqueness theorem and variational principle for generalized thermoelasticity. J Therm Stress 3(4):223–230

    Article  Google Scholar 

  44. Bem Z (1982) Existence of a generalized solution in thermoelasticity with two relaxation times, part I. J Therm Stress 5(3–4):395–404

    MathSciNet  Google Scholar 

  45. Iesan D (1989) Reciprocity, uniqueness, and minimum principles in dynamic theory of thermoelasticity. J Therm Stress 12(4):465–482

    Article  MathSciNet  Google Scholar 

  46. Wang J, Dhaliwal RS (1993) Uniqueness in generalized thermoelasticity in unbounded domains. J Therm Stress 16(1):1–10

    Article  MathSciNet  Google Scholar 

  47. Chirita S (1979) Existance and uniqueness theorems for linear coupled thermoelasticity with microstructure. J Therm Stress 2(2):157–170

    Article  MathSciNet  Google Scholar 

  48. Iesan D (1983) Thermoelasticity of nonsimple materials. J Therm Stress 6(2–4):167–188

    MathSciNet  Google Scholar 

  49. Dhaliwal RS, Sherief HH (1980) Generalized thermoelasticity for anisotropic media. Q Appl Math 38:1–8

    Article  MathSciNet  MATH  Google Scholar 

  50. Chandrasekharaiah DS (1984) A uniqueness theorem in generalized thermoelasticity. J Tech Phys 25:345–350

    MATH  Google Scholar 

  51. Chandrasekharaiah DS (1996) A uniqueness theorem in the theory of thermoelasticity without energy dissipation. J Therm Stress 19(3):267–272

    Article  MathSciNet  Google Scholar 

  52. Gurtin ME (1972). In: Flugge S (Chief editor), Truesdell C (ed) The linear theory of elasticity, encyclopedia of physics, vol Vla/2. Springer, Berlin, pp 1–295

    Google Scholar 

  53. Chandrasekharaiah DS (1996) A note on the uniqueness of solution in the linear theory of thermoelasticity without energy dissipation. J Elast 43:279–283

    Article  MathSciNet  MATH  Google Scholar 

  54. Quintanilla R (2002) Existence in thermoelasticity without energy dissipation. J Therm Stress 25:195–202

    Article  MathSciNet  Google Scholar 

  55. Biot MA (1956) Thermoelasticity and irreversible thermodynamics. J Appl Phys 27(3):240–253

    Article  MathSciNet  MATH  Google Scholar 

  56. Ben-Amoz M (1965) On a variational theorem in coupled thermoelasticity. J Appl Mech 32:943–945

    Article  Google Scholar 

  57. Nichell RE, Sackman JL (1968) Variational principles for linear coupled thermoelasticity. Q Appl Mech 26:11–26

    MathSciNet  MATH  Google Scholar 

  58. Hetnarski RB, Ignaczak J (2011) The mathematical theory of elasticity, 2nd edn. CRC Press, Boca Raton

    MATH  Google Scholar 

  59. Alitay G, Dökmeci MC (2014) Variational principle in coupled thermoelasticity. In: Hetnarski RB (ed) Encyclopedia of thermal stresses, vol 11. Springer, Dordrecht, pp 6342–6348

    Google Scholar 

  60. Gładysz J (1985) Convolutional variational principles for thermoelasticity with finite wave speeds. J Therm Stress 8(2):205–226. https://doi.org/10.1080/01495738508942230

    Article  MathSciNet  Google Scholar 

  61. Gładysz J (1986) Approximate one-dimensional solution in linear thermoelasticity with finite wave speeds. J Therm Stress 9(1):45–57. https://doi.org/10.1080/01495738608961886

    Article  Google Scholar 

  62. Avalishvili G, Avalishvili M, Müller WH (2017) On the well-posedness of the Green-Lindsay model. Math Mech Complex Syst 5(2). https://doi.org/10.2140/memocs.2017.5.115

    Article  MathSciNet  MATH  Google Scholar 

  63. Avalishvili G, Avalishvili M, Müller WH (2017) An investigation of the Green-Lindsay three-dimensional model. Math Mech Solids 117. https://doi.org/10.1177/1081286517698739

    Article  MathSciNet  MATH  Google Scholar 

  64. Chyr IA, Shynkarenko HA (2017) Well-posedness of the Green-Lindsay variational problem of dynamic thermoelasticity. J Math Sci 226(1). https://doi.org/10.1007/s10958-017-3515-0

    Article  MathSciNet  MATH  Google Scholar 

  65. Maysel VM (1951) The temperature problem of the theory of elasticity (in Russian), Kiev

    Google Scholar 

  66. Ziegler F, Irschik H (1986) Thermal stress analysis based on Maysel’s formula. In: Hetnarski RB (ed) Thermal stresses II. Elsevier Science, Amsterdam

    Google Scholar 

  67. Predeleanu PM (1959) On thermal stresses in visco-elastic bodies. Soc Phys RPR 2:3

    MathSciNet  MATH  Google Scholar 

  68. Ionescu-Cazimir V (1964) Problem of linear thermoelasticity: theorems on reciprocity I. Bull Acad Polon Sci Ser Sci Tech 12:473–480

    MATH  Google Scholar 

  69. Chandrasekharaiah DS (1984) A reciprocal theorem in generalized thermoelasticity. J Elast 14:223–226

    Article  MATH  Google Scholar 

  70. Nappa L (1997) On the dynamical theory of mixtures of thermoelastic solids. J Therm Stress 20(5):477–489

    Article  MathSciNet  Google Scholar 

  71. Arpaci VS (1966) Conduction heat transfer. Addison Wesley, Reading

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard B. Hetnarski .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hetnarski, R.B., Eslami, M.R. (2019). Thermodynamics of Elastic Continuum. In: Thermal Stresses—Advanced Theory and Applications. Solid Mechanics and Its Applications, vol 158. Springer, Cham. https://doi.org/10.1007/978-3-030-10436-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10436-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10435-1

  • Online ISBN: 978-3-030-10436-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics