Skip to main content

Sequestration of Heavy Metals from Industrial Wastewater Using Composite Ion Exchangers

  • Chapter
  • First Online:

Abstract

The transition from agrarian to an industrial society has witnessed several environmental concerns globally. In recent years, contamination of water bodies with refractory contaminants discharged from industrial wastewater significantly interrupted the ecosystems. The most important pollutants in surface and groundwater are arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc; the recalcitrant pollutant and bioaccumulate in the ecosystems as metal–organic complexes. The conventional techniques used for the removal of heavy metals are chemical precipitation, chemical oxidation, coagulation, evaporation, ion exchange, membrane separation, reverse osmosis, electrolytic and adsorption. However, composite ion exchangers have proven to be versatile and efficient for removing heavy metals from contaminated water. This chapter focuses on various materials (inorganic to nanocomposite) recently developed for the removal of heavy metals from wastewater, mechanisms and treatment performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Williams E (2011) Environmental effects of information and communications technologies. Nature 479(7373):354–358

    Article  CAS  Google Scholar 

  2. Shankar BS, Usha HS (2007) Environmental degradation due to industrialization—a case study of Whitefield Industrial Area, Bangalore, India. Environ Eng Sci 24(9):1338–1342

    Article  CAS  Google Scholar 

  3. Varjani SJ, Rana DP, Jain AK, Bateja S, Upasani VN (2015) Synergistic ex-situ biodegradation of crude oil by halotolerant bacterial consortium of indigenous strains isolated from on shore sites of Gujarat, India. Int Biodeterior Biodegradation 103:116–124

    Article  CAS  Google Scholar 

  4. Varjani SJ (2017) Microbial degradation of petroleum hydrocarbons. Bioresour Technol 223:277–286

    Article  CAS  Google Scholar 

  5. Varjani SJ, Upasani VN (2017) A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. Int Biodeterior Biodegradation 120:71–83

    Article  CAS  Google Scholar 

  6. Varjani SJ, Gnansounou E, Pandey A (2017) Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms. Chemosphere 188:280–291

    Article  CAS  Google Scholar 

  7. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. In: Luch A (ed) Molecular, clinical and environmental toxicology, experientia supplementum, vol 101. Springer, Basel, pp 133–164

    Chapter  Google Scholar 

  8. Marg BZ (2011) Hazardous metals and minerals pollution in India: sources, toxicity and management. A position paper. Indian National Science Academy, New Delhi, 2011. Last Accessed: 27 April 2017

    Google Scholar 

  9. Pandey J, Singh R (2017) Heavy metals in sediments of Ganga River: up-and downstream urban influences. Appl Water Sci 7(4):1669–1678

    Article  CAS  Google Scholar 

  10. Raju KV, Somashekar RK, Prakash KL (2012) Heavy metal status of sediment in river Cauvery, Karnataka. Environ Monit Assess 184(1):361–373

    Article  Google Scholar 

  11. Hussain J, Husain I, Arif M, Gupta N (2017) Studies on heavy metal contamination in Godavari river basin. Appl Water Sci. 7(8):4539–4548

    Article  CAS  Google Scholar 

  12. Shankar S, Shanker U, Shikha (2014) Arsenic contamination of groundwater: a review of sources, prevalence, health risks, and strategies for mitigation. Sci World J 2014:304524. https://doi.org/10.1155/2014/304524

    Article  Google Scholar 

  13. EPA, US (2001) National primary drinking water regulations: arsenic and clarifications to compliance and new source contaminants monitoring. Federal Register 66(14):69–76. Available at https://www.federalregister.gov/documents/2001/01/22/01-1668/national-primary-drinking-water-regulations-arsenic-and-clarifications-to-compliance-and-new-source. Last Accessed 27 April 2017

  14. Ravenscroft P, Brammer H, Richards K (2009) Arsenic pollution: a global synthesis, vol 28. Wiley, New York

    Google Scholar 

  15. ATSDR (Agency for Toxic Substances and Disease Registry) (2013) Arsenic toxicity. U.S. Department of Health and Human Services, Atlanta, GA, USA. Available at https://www.atsdr.cdc.gov/csem/arsenic/docs/arsenic.pdf. Last Accessed 27 April 2017

  16. ATSDR (Agency for Toxic Substances and Disease Registry) (2011) Case studies in environmental medicine (CSEM), cadmium toxicity. U.S. Department of Health and Human Services, Atlanta, GA, USA. Available at https://www.atsdr.cdc.gov/csem/cadmium/docs/cadmium.pdf. Last Accessed 27 April 2017

  17. Mohan Kumar K, Hariharan V, Rao NP (2016) Heavy metal contamination in groundwater around industrial estate vs. residential areas in Coimbatore, India. J Clin Diagn Res 10(4): BC05–BC07

    Google Scholar 

  18. Gotteland M, Araya M, Pizarro F, Olivares M (2001) Effect of acute copper exposure on gastrointestinal permeability in healthy volunteers. Dig Dis Sci 46(9):1909–1914

    Article  CAS  Google Scholar 

  19. Ye BJ, Kim BG, Jeon MJ, Kim SY, Kim HC, Jang TW, Chae HJ, Choi WJ, Ha MN, Hong YS (2016) Evaluation of mercury exposure level, clinical diagnosis and treatment for mercury intoxication. Ann Occup Environ Med 28:5. https://doi.org/10.1186/s40557-015-0086-8

  20. Rathor G, Chopra N, Adhikari T (2017) Remediation of nickel ion from soil and water using nano particles of zero-valent iron (nZVI). Orient J Chem 33(2):1025–1029

    Article  CAS  Google Scholar 

  21. Nriagu J (2017) Zinc toxicity in humans. School of Public Health, University of Michigan

    Google Scholar 

  22. Varjani S, Agarwal AK, Gnansounou E, Gurunathan B (eds) (2018) Bioremediation: applications for environmental protection and management. Springer Nature, Singapore

    Google Scholar 

  23. Abdel-Raouf MS, Abdul-Raheim ARM (2017) Removal of heavy metals from industrial waste water by biomass-based materials: a review. J Pollut Eff Contr 5:180. https://doi.org/10.4172/2375-4397.1000180

    Article  Google Scholar 

  24. Kurniawan TA, Chan GY, Lo WH, Babel S (2006) Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118(1–2):83–98

    Article  CAS  Google Scholar 

  25. Varjani SJ, Gnansounou E (2017) Microbial dynamics in petroleum oilfields and their relationship with physiological properties of petroleum oil reservoirs. Bioresour Technol 245:1258–1265

    Article  CAS  Google Scholar 

  26. Varjani SJ (2017) Remediation processes for petroleum oil polluted soil. Indian J Biotechnol 16:157–163

    CAS  Google Scholar 

  27. Jakob A, Stucki S, Kuhn P (1995) Evaporation of heavy metals during the heat treatment of municipal solid waste incinerator fly ash. Environ Sci Technol 29(9):2429–2436

    Article  CAS  Google Scholar 

  28. Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4(4):361–377

    Article  CAS  Google Scholar 

  29. Kang SY, Lee JU, Moon SH, Kim KW (2004) Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater. Chemosphere 56(2):141–147

    Article  CAS  Google Scholar 

  30. Jha B, Singh DN (2016) Basics of zeolites. In: Fly ash zeolites. Springer, Singapore, pp 5–31

    Google Scholar 

  31. Stylianou MA, Hadjiconstantinou MP, Inglezakis VJ, Moustakas KG, Loizidou MD (2007) Use of natural clinoptilolite for the removal of lead, copper and zinc in fixed bed column. J Hazard Mater 143(1–2):575–581

    Article  CAS  Google Scholar 

  32. Malamis S, Katsou E (2013) A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: examination of process parameters, kinetics and isotherms. J Hazard Mater 252–253:428–461

    Article  Google Scholar 

  33. Dennis R (2006) Coal industry turns to ion exchange technology for wastewater minimization. Industrial WaterWorld. PennWell Corporation, Tulsa, OK. Available at http://www.waterworld.com/articles/iww/print/volume-6/issue-5/columns/product-focus/coal-industry-turns-to-ion-exchange-technology-for-wastewater-minimization.html. Last Accessed: 27 April 2017

  34. Sungur S, Babaoğlu S (2005) Synthesis of a new cellulose ion exchanger and use for the separation of heavy metals in aqueous solutions. Sep Sci Technol 40(10):2067–2078

    Article  CAS  Google Scholar 

  35. Chutia P, Kato S, Kojima T, Satokawa S (2009) Arsenic adsorption from aqueous solution on synthetic zeolites. J Hazard Mater 162(1):440–447

    Article  CAS  Google Scholar 

  36. Clearfield A (2000) Inorganic ion exchangers, past, present, and future. Solvent Extr Ion Exch 18(4):655–678

    Article  CAS  Google Scholar 

  37. Nabi SA, Ganai SA, Shalla AH (2008) New organic-inorganic type acrylamide aluminumtungstate: preparation, characterization and analytical applications as a cation exchange material. Sep Sci Technol 43(14):3695–3711

    Article  CAS  Google Scholar 

  38. Nabi SA, Ganai SA, Khan AM (2008) Effect of surfactants and temperature on adsorption behavior of metal ions on organic–inorganic hybrid exchanger, acrylamide aluminum tungstate. J Surfactants Deterg 11(3):207–213

    Article  CAS  Google Scholar 

  39. Nabi SA, Ganai SA, Naushad M (2008) A New Pb2+ ion-selective hybrid cation-exchanger-EDTA-zirconium iodate: Synthesis, characterization and analytical applications. Adsorpt Sci Technol 26(6):463–478

    Article  CAS  Google Scholar 

  40. Nabi SA, Bushra R, Al-Othman ZA, Naushad M (2011) Synthesis, characterization, and analytical applications of a new composite cation exchange material acetonitrile stannic (IV) selenite: adsorption behavior of toxic metal ions in nonionic surfactant medium. Sep Sci Technol 46(5):847–857

    Article  CAS  Google Scholar 

  41. Mohammad A, Amin A, Naushad M, Eldesoky GE (2012) Forward ion-exchange kinetics of heavy metal ions on the surface of carboxymethyl cellulose Sn (IV) phosphate composite nano-rod-like cation exchanger. J Therm Anal Calorim 110(2):715–723

    Article  CAS  Google Scholar 

  42. Viswanathan N, Meenakshi S (2010) Development of chitosan supported zirconium (IV) tungstophosphate composite for fluoride removal. J Hazard Mater 176(1–3):459–465

    Article  CAS  Google Scholar 

  43. Khan AA, Akhtar T (2009) Synthesis, characterization and ion-exchange properties of a fibrous type ‘polymeric-inorganic’composite cation-exchanger Nylon-6, 6 Sn (IV) phosphate: its application in making Hg (II) selective membrane electrode. Electrochim Acta 54(12):3320–3329

    Article  CAS  Google Scholar 

  44. Islam M, Patel R (2008) Polyacrylamide thorium (IV) phosphate as an important lead selective fibrous ion exchanger: synthesis, characterization and removal study. J Hazard Mater 156(1–3):509–520

    Article  CAS  Google Scholar 

  45. Iqbal N, Mobin M, Rafiquee MZA, Al-Lohedan HA (2012) Characterization and adsorption behavior of newly synthesized sodium bis (2-ethylhexyl) sulfosuccinate–cerium (IV) phosphate (AOT–CeP) cation exchanger. Chem Eng Res Des 90(12):2364–2371

    Article  CAS  Google Scholar 

  46. El-Azony KM, Aydia MI, El-Mohty AA (2011) Separation of Cr (III) from Cr (VI) by Triton X-100 cerium (IV) phosphate as a surface active ion exchanger. J Radioanal Nucl Chem 289(2):381–388

    Article  CAS  Google Scholar 

  47. Varshney KG, Rafiquee MZA, Somya A (2007) Synthesis, characterization and adsorption behaviour of TX-100 based Sn (IV) phosphate, a new hybrid ion exchanger. J Therm Anal Calorim 90(3):663–667

    Article  CAS  Google Scholar 

  48. Rathore BS, Sharma G, Pathania D, Gupta VK (2014) Synthesis, characterization and antibacterial activity of cellulose acetate–tin (IV) phosphate nanocomposite. Carbohydr Polym 103:221–227

    Article  CAS  Google Scholar 

  49. Khan AA, Akhtar T (2012) Cation-exchange kinetic studies on poly-o-toluidine Ce (IV) phosphate: a nano-composite and electrical conducting material. J Mater Sci 47(7):3241–3247

    Article  CAS  Google Scholar 

  50. Khan AA, Habiba U, Khan A (2009) Synthesis and characterization of organic-inorganic nanocomposite poly-o-anisidine Sn (IV) arsenophosphate: its analytical applications as Pb (II) ion-selective membrane electrode. Int J Anal Chem 2009:1–10

    Article  Google Scholar 

  51. Khan AA, Habiba U, Shaheen S, Khalid M (2013) Ion-exchange and humidity sensing properties of poly-o-anisidine sn (IV) arsenophosphate nano-composite cation-exchanger. J Environ Chem Eng 1(3):310–319

    Article  CAS  Google Scholar 

  52. Gupta VK, Agarwal S, Pathania D, Kothiyal NC, Sharma G (2013) Use of pectin-thorium (IV) tungstomolybdate nanocomposite for photocatalytic degradation of methylene blue. Carbohydr Polym 96(1):277–283

    Article  CAS  Google Scholar 

  53. Zagorodni AA (2006) Ion exchange materials: properties and applications. Elsevier, London

    Google Scholar 

  54. Xu T (2015) Regeneration of the ion-exchange resin. Encycl Membranes 1–3

    Google Scholar 

Download references

Acknowledgements

Authors thank Prof. M. Sivanandham, Secretary, SVEHT and SVCE for their support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sunita Varjani or Ekambaram Nakkeeran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rathna, R., Varjani, S., Nakkeeran, E. (2019). Sequestration of Heavy Metals from Industrial Wastewater Using Composite Ion Exchangers. In: Inamuddin, Ahamed, M., Asiri, A. (eds) Applications of Ion Exchange Materials in the Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-10430-6_9

Download citation

Publish with us

Policies and ethics