REWAS 2019 pp 153-161 | Cite as

Isolation of Cyanide-Degrading Bacteria from Cassava-Processing Effluent

  • Amzy Tania Vallenas-ArévaloEmail author
  • Carlos Gonzalo Alvarez Rosario
  • Marcela dos Passos Galluzi Baltazar
  • Denise Crocce Romano Espinosa
  • Jorge Alberto Soares Tenório
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Cyanidation is a widely used process for gold leaching where cyanide-containing solutions are used to extract metals from ores. However, cyanidation produces toxic wastes that must be treated prior to discharge to the environment. In this context, cyanide biodegradation has appeared as an environmental friendly and alternative technology. In this study, cyanide-degrading bacteria was isolated from cassava-processing effluents containing 300 ppm of free cyanide using a selective media with cyanide and glycerol. From the effluent, four isolated strains and one consortium were obtained and were tested to degrade cyanide in alkaline medium containing 150 mg L−1 free cyanide and 0.5 g L−1 scratch for 72 h in orbital agitation. Two strains and the consortium showed the biggest difference from negative control degrading 27–30% of free cyanide in solution proving their potential use in cyanide treatment. Finally, microscopy analysis showed rod-shaped cells in selected samples and classified isolated strains as gram negative and the consortium as gram positive.


Cyanide Biodegradation Bacteria Cassava processing Isolation 



The authors would like to thank the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES) and the Brazilian National Council for Scientific and Technological Development (CNPq) for the financial support provided for this work.


  1. 1.
    Kuyucak N, Akcil A (2013) Cyanide and removal options from effluents in gold mining and metallurgical processes. Miner Eng 50–51:13–29CrossRefGoogle Scholar
  2. 2.
    Mudder T, Botz M (2004) Cyanide and society: a critical review. Tha Eur J Miner Process Environ Prot 4(1):62–74Google Scholar
  3. 3.
    Chisté RC, Cohen KDO, Mathias EDA, Oliveira SS (2010) Quantificação de cianeto total nas etapas de processamento das farinhas de mandioca dos grupos seca e d’água. Acta Amaz 40(1):221–226CrossRefGoogle Scholar
  4. 4.
    Akcil A (2003) Destruction of cyanide in gold mill effluents: biological versus chemical treatments. Biotechnol Adv 21(6):501–511CrossRefGoogle Scholar
  5. 5.
    Botz M (1999) Overview of cyanide treatment methods. Gold Inst 11Google Scholar
  6. 6.
    Huertas MJ et al (2010) Alkaline cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor. Influence of pH. J Hazard Mater 179(1–3):72–78CrossRefGoogle Scholar
  7. 7.
    Luque Almagro VM et al (2005) Bacterial degradation of cyanide and its metal complexes under alkaline conditions. Appl Environ Microbiol 71(2):940–947CrossRefGoogle Scholar
  8. 8.
    Dash RR, Gaur A, Balomajumder C (2009) Cyanide in industrial wastewaters and its removal: a review on biotreatment. J Hazard Mater 163(1):1–11CrossRefGoogle Scholar
  9. 9.
    APHA/AWWA/WEF (2012) Standard methods for the examination of water and wastewater. Stand Methods 541Google Scholar
  10. 10.
    Wu CF et al (2014) An effective method for the detoxification of cyanide-rich wastewater by Bacillus sp CN-22. Appl Microbiol Biotechnol 98(8):3801–3807CrossRefGoogle Scholar
  11. 11.
    ATSDR (2006) Toxicological Profile for CyanideGoogle Scholar
  12. 12.
    Mai-prochnow A, Clauson M, Hong J, Murphy AB (2016) Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Nat Publ Gr 1–11Google Scholar
  13. 13.
    Mekuto L, Jackson VA, Ntwampe KS, Obed (2013) Biodegradation of free cyanide using bacillus sp consortium dominated by Bacillus safensis, Lichenformis and Tequilensis Strains: a bioprocess supported solely with whey. Bioremediat Biodegrad 18:1–7Google Scholar
  14. 14.
    Lee C, Kim J, Chang J, Hwang S (2003) Isolation and identification of thiocyanate utilizing chemolithotrophs from gold mine soils. Biodegradation 14(3):183–188CrossRefGoogle Scholar
  15. 15.
    Gupta N, Balomajumder C, Agarwal VK (2010) Enzymatic mechanism and biochemistry for cyanide degradation: a review. J Hazard Mater 176(1–3):1–13CrossRefGoogle Scholar
  16. 16.
    Singh N, Balomajumder C (2016) Simultaneous biosorption and bioaccumulation of phenol and cyanide using coconut shell activated carbon immobilized pseudomonas putida (MTCC 1194). J Environ Chem Eng 4(2):1604–1614CrossRefGoogle Scholar
  17. 17.
    Castillo F, Rold MD, Moreno-vivi C (2005) Alkaline cyanide biodegradation by Pseudomonas pseudoalcaligenes CECT5344 33:168–169Google Scholar
  18. 18.
    Watanabe A, Yano K, Ikebukuro K, Karube I (1998) Cyanide hydrolysis in a cyanide-degrading bacterium, pseudomonas stutzeri AK61, by cyanidase. Microbiology 144(6):1677–1682CrossRefGoogle Scholar
  19. 19.
    Kao CM, Liu JK, Lou HR, Lin CS, Chen SC (2003) Biotransformation of cyanide to methane and ammonia by Klebsiella oxytoca. Chemosphere 50(8):1055–1061CrossRefGoogle Scholar
  20. 20.
    Chen CY, Kao CM, Chen SC (2008) Application of Klebsiella oxytoca immobilized cells on the treatment of cyanide wastewater. Chemosphere 71(1):133–139CrossRefGoogle Scholar
  21. 21.
    Mekuto L, Ntwampe SKO, Akcil A (2016) An integrated biological approach for treatment of cyanidation wastewater. Sci Total Environ 571:711–720CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Amzy Tania Vallenas-Arévalo
    • 1
    Email author
  • Carlos Gonzalo Alvarez Rosario
    • 1
  • Marcela dos Passos Galluzi Baltazar
    • 1
  • Denise Crocce Romano Espinosa
    • 1
  • Jorge Alberto Soares Tenório
    • 1
  1. 1.Chemical Engineering DepartmentEscola Politécnica, Universidade de São Paulo (USP)São PauloBrazil

Personalised recommendations