Skip to main content

Technological Properties of Brick Waste-Based Geopolymer

  • Conference paper
  • First Online:
Green Materials Engineering

Abstract

Studies using the geopolymerization process of the brick wastes from civil construction in the production of new materials, with characteristics and properties similar to traditional ceramics, has been growing in recent years. The present work used these brick wastes as precursor material and Na2SiO3 (alkaline sodium silicate) and KOH (potassium hydroxide) as alkaline activators on the geopolymer dosages, where the blend was determined with the molar ratio SiO2/Al2O3 equal to 4.0. The molded and pressed specimens were left to mature at room temperature and at 60 °C during 7 and 14 days. Afterward, they were submitted to the flexural strength, linear shrinkage, water absorption, and apparent porosity tests. The results showed that, the longer the cure time, the better the technological characteristics of the specimens, both at room and controlled temperature. Thus, it was verified that the brick wastes are an interesting alternative as binder in the production of geopolymeric ceramics .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pinto AT (2006) Introdução ao Estudo dos Geopolímeros. Universidade de Trás-dos-Montes e Alto Douro, Vila Real

    Google Scholar 

  2. Yun-Ming L, Cheng-Yong H, Li L, Jaya NA, Abdullah MMAl, Jin TS, Hussin K (2017). Formation of one-part-mixing geopolymers and geopolymer ceramics from geopolymer powder. Constr Build Mater 156:9–18

    Google Scholar 

  3. Davidovits J (1999). Chemistry of geopolymeric systems, terminology. In: Proceedings of the 2nd international conference on geopolymer’99. Saint-Quentin, France, 30 de June, 1–2 de July de 1999

    Google Scholar 

  4. Cioffi R, Maffucci L, Santoro L (2003) Optimization of geopolymer synthesis by calcination and polycondensation of a kaolinitic residue. Resour Conserv Recy 40:27–38

    Article  Google Scholar 

  5. Hardjito D, Rangan BV (2005). Development and properties of low-calcium fly ash based geopolymer concrete. Research report GC, 1, Australia, Perth, Faculty of Engineering, Curtin University of Technology, pp 1–94

    Google Scholar 

  6. Davidovits J (2008) Geopolymer chemistry and applications, 2nd edn. France

    Google Scholar 

  7. Almeida KS, Roberto ALS, Camila SM (2014). Análise dos Impactos Ambientais Gerados pela Indústria de Cerâmica Vermelha no Piauí. Cerâmica Industrial. pp 33–34

    Google Scholar 

  8. Araújo L, Meert RLB, Labrincha JA, Senff L (2017). Desenvolvimentos de geopolímero a partir de resíduo da construção como agregado. 8° forum internacional de Resíduos Sólidos, UTFPR, Coritiba, Brasil

    Google Scholar 

  9. Reig L, Tashima MM, Borrachero MV, Monzó J, Cheeseman CR, Payá J (2013). Properties and microstructure of alkali-activated red clay brick waste. Constr Build Mater, 98–106. Elsevier

    Google Scholar 

  10. Komnitsas K, Zaharaki D, Vlachou A, Bartzas G, Galetakis M (2015). Effect of synthesis parameters on the quality of construction and demolition wastes (CDW) geopolymers. Adv Powder Technol, 368–375. Elsevier

    Google Scholar 

  11. Zawraha MF, Gadoa RA, Feltin N, Ducourtieux S, Devoille L (2016). Recycling and utilization assessment of waste fired clay bricks (Grog) with granulated blast-furnace slag for geopolymer production. Process Saf Environ Prot, 237–251

    Google Scholar 

  12. Azevedo AG de S, Strecker K, Lombardi CT (2018). Produção de geopolímeros à base de metacaulim e cerâmica vermelha. Cerâmica 64:388–396

    Google Scholar 

  13. Santos PS (1989) Ciência e Tecnologia das Argilas, 2nd edn. Edgard Blücher, São Paulo

    Google Scholar 

  14. ABNT - Associação brasileira de normas técnicas - NBR 15270-1 (2005) Componentes cerâmicos. Parte 1: Blocos cerâmicos para alvenaria de vedação – Terminologia e requisitos

    Google Scholar 

  15. ABNT - Associação brasileira de normas técnicas - NBR 15310 - (2009). Componentes Cerâmicos – Telhas – Terminologia, requisitos e métodos de ensaio

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kátia Cristina P. Faria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Faria, K.C.P., Fontes Vieira, C.M., Dias, D.P., Fagundes, M.Y.S., Ferreira, W.M. (2019). Technological Properties of Brick Waste-Based Geopolymer. In: Ikhmayies, S., Li, J., Vieira, C., Margem (Deceased), J., de Oliveira Braga, F. (eds) Green Materials Engineering. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-10383-5_32

Download citation

Publish with us

Policies and ethics