An Integrated Machine Learning Approach for Automatic Highway Extraction from Airborne LiDAR Data and Orthophotos

  • Biswajeet PradhanEmail author
  • Maher Ibrahim Sameen
Part of the Advances in Science, Technology & Innovation book series (ASTI)


Automatic extraction of highways from airborne LiDAR (light detection and ranging) has been a long-standing active research topic in remote sensing (Idrees and Pradhan 2016, 2018; Idrees et al 2016; Fanos et al. 2016, 2018; Fanos and Pradhan 3; Abdulwahid and Pradhan 2017; Pradhan et al. 2016; Sameen et al. 2017; Sameen and Pradhan 2017a, b). Accurate and computationally useful extraction of highway information from remote sensing data is significant for various applications such as traffic accident modeling (Bentaleb et al. 2014), navigation (Kim et al. 2006), intelligent transportation systems (Vaa et al. 2007), and natural hazard assessments (Jebur et al. 2014).


  1. Abdulwahid, W. M., & Pradhan, B. (2017). Landslide vulnerability and risk assessment for multi-hazard scenarios using airborne laser scanning data (LiDAR). Landslides, 14(3), 1057–1076.Google Scholar
  2. Alharthy, A., & Bethel, J. (2003). Automated road extraction from LIDAR data. In Proceedings of the ASPRS Annual Conference, 2003 (pp. 05–09).Google Scholar
  3. Amo, M., Martínez, F., & Torre, M. (2006). Road extraction from aerial images using a region competition algorithm. IEEE Transactions on Image Processing, 15, 1192–1201.CrossRefGoogle Scholar
  4. Antonarakis, A. S., Richards, K. S., & Brasington, J. (2008). Object-based land cover classification using airborne LiDAR. Remote Sensing of Environment, 112, 2988–2998.CrossRefGoogle Scholar
  5. Baczyński, D., & Parol, M. (2004). Influence of artificial neural network structure on quality of short-term electric energy consumption forecast. IEE Proceedings-Generation, Transmission and Distribution, 151, 241–245.CrossRefGoogle Scholar
  6. Bazi, Y., & Melgani, F. (2006). Toward an optimal SVM classification system for hyperspectral remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 44, 3374–3385.CrossRefGoogle Scholar
  7. Bentaleb, K., Lakouari, N., Marzoug, R., Ez-Zahraouy, H., & Benyoussef, A. (2014). Simulation study of traffic car accidents in single-lane highway. Physica A: Statistical Mechanics and its Applications, 413, 473–480.CrossRefGoogle Scholar
  8. Boyko, A., & Funkhouser, T. (2011). Extracting roads from dense point clouds in large scale urban environment. ISPRS Journal of Photogrammetry and Remote Sensing, 66, S2–S12.CrossRefGoogle Scholar
  9. Brennan, R., & Webster, T. (2006). Object-oriented land cover classification of lidar-derived surfaces. Canadian Journal of Remote Sensing, 32, 162–172.CrossRefGoogle Scholar
  10. Briese, C., Pfeifer, N., & Dorninger, P. (2002). Applications of the robust interpolation for DTM determination. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 34, 55–61.Google Scholar
  11. Butenuth, M., Straub, B.-M., Heipke, C., & Willrich, F. (2003). Tree supported road extraction from arial images using global and local context knowledge. In Computer vision systems (pp. 162–171). Berlin: Springer.Google Scholar
  12. Choi, Y.-W., Jang, Y.-W., Lee, H.-J., & Cho, G.-S. (2008). Three-dimensional LiDAR data classifying to extract road point in urban area. IEEE Geoscience and Remote Sensing Letters, 5, 725–729.CrossRefGoogle Scholar
  13. Clode, S., Kootsookos, P. J., & Rottensteiner, F. (2004). The automatic extraction of roads from LIDAR data. ISPRS 2004.Google Scholar
  14. Coren, F., & Sterzai, P. (2006). Radiometric correction in laser scanning. International Journal of Remote Sensing, 27, 3097–3104.CrossRefGoogle Scholar
  15. Ding, S., Xu, X., & Nie, R. (2013). Extreme learning machine and its applications. Neural Computing and Applications, 25, 549–556.CrossRefGoogle Scholar
  16. Evans, J. S., & Hudak, A. T. (2007). A multiscale curvature algorithm for classifying discrete return lidar in forested environments. IEEE Transactions on Geoscience and Remote Sensing, 45, 1029–1038.CrossRefGoogle Scholar
  17. Fanos, A. M., Pradhan, B., Aziz, A. A., Jebur, M. N., & Park, H. J. (2016). Assessment of multi-scenario rockfall hazard based on mechanical parameters using high-resolution airborne laser scanning data and GIS in a tropical area. Environmental Earth Sciences, 75(15), 1129.Google Scholar
  18. Fanos, A. M., & Pradhan, B. (2018). Laser scanning systems and techniques in rockfall source identification and risk assessment: a critical review. Earth Systems and Environment, 2(2), 163–182.Google Scholar
  19. Fanos, A. M., Pradhan, B., Mansor, S., Yusoff, Z. M., & bin Abdullah, A. F. (2018). A hybrid model using machine learning methods and GIS for potential rockfall source identification from airborne laser scanning data. Landslides, 15(9), 1833–1850.Google Scholar
  20. Friedl, M. A., & Brodley, C. E. (1997). Decision tree classification of land cover from remotely sensed data. Remote Sensing of Environment, 61, 399–409.CrossRefGoogle Scholar
  21. Gardner, M. W., & Dorling, S. R. (1998). Artificial neural networks (the multilayer perceptron)—A review of applications in the atmospheric sciences. Atmospheric Environment, 32, 2627–2636.CrossRefGoogle Scholar
  22. Gokgoz, E., & Subasi, A. (2015). Comparison of decision tree algorithms for EMG signal classification using DWT. Biomedical Signal Processing and Control, 18, 138–144.CrossRefGoogle Scholar
  23. Gong, L., Zhang, Y., Li, Z., & Bao, Q. (2010). Automated road extraction from LiDAR data based on intensity and aerial photo. In 2010 3rd International Congress on Image and Signal Processing (CISP) (pp. 2130–2133).Google Scholar
  24. Hodgson, M. E., Jensen, J. R., & Im, J. (2008). Object-based land cover classification using high-posting-density LiDAR Data. GIScience & Remote Sensing, 45, 209–228.CrossRefGoogle Scholar
  25. Hu, X., Tao, C. V., & Hu, Y. (2004). Automatic road extraction from dense urban area by integrated processing of high resolution imagery and lidar data. In International archives of photogrammetry, remote sensing and spatial information sciences. Istanbul, Turkey (Vol. 35, p. B3).Google Scholar
  26. Hu, X., Li, Y., Shan, J., Zhang, J., & Zhang, Y. (2014). Road centerline extraction in complex urban scenes from LiDAR data based on multiple features. IEEE Transactions on Geoscience and Remote Sensing, 52, 7448–7456.CrossRefGoogle Scholar
  27. Idrees, M. O., & Pradhan, B. (2016). A decade of modern cave surveying with terrestrial laser scanning: A review of sensors, method and application development. International Journal of Speleology, 45(1), 71–88.Google Scholar
  28. Idrees, M. O., Pradhan, B., Buchroithner, M. F., Shafri, H. Z. M., & Khairunniza-Bejo, S. (2016) Assessing the transferability of a hybrid Taguchi-objective function method to optimize image segmentation for detecting and counting cave roosting birds using terrestrial laser scanning data. Journal of Applied Remote Sensing, 10(3), 035023.Google Scholar
  29. Idrees, M. O., & Pradhan, B. (2018). Geostructural stability assessment of cave using rock surface discontinuity extracted from terrestrial laser scanning point cloud. Journal of Rock Mechanics and Geotechnical Engineering, 10(3), 534–544.Google Scholar
  30. Jebur, M. N., Pradhan, B., & Tehrany, M. S. (2014). Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale. Remote Sensing of Environment, 152, 150–165.CrossRefGoogle Scholar
  31. Kim, J. G., Han, D. Y., Yu, K. Y., Kim, Y. I., & Rhee, S. M. (2006). Efficient extraction of road information for car navigation applications using road pavement markings obtained from aerial images. Canadian Journal of Civil Engineering, 33, 1320–1331.CrossRefGoogle Scholar
  32. Lary, D. J., Alavi, A. H., Gandomi, A. H., & Walker, A. L. (2015). Machine learning in geosciences and remote sensing. Geoscience Frontiers.Google Scholar
  33. Li, J., Lee, H. J., & Cho, G. S. (2008). Parallel algorithm for road points extraction from massive LiDAR data (pp. 308–315).Google Scholar
  34. Mašetic, Z., & Subasi, A. (2013). Detection of congestive heart failures using C4. 5 Decision Tree.Google Scholar
  35. Matkan, A. A., Hajeb, M., & Sadeghian, S. (2014). Road extraction from lidar data using support vector machine classification. Photogrammetric Engineering & Remote Sensing, 80, 409–422.CrossRefGoogle Scholar
  36. Melgani, F., & Bruzzone, L. (2004). Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42, 1778–1790.CrossRefGoogle Scholar
  37. Mena, J. B., & Malpica, J. A. (2005). An automatic method for road extraction in rural and semi-urban areas starting from high resolution satellite imagery. Pattern Recognition Letters, 26, 1201–1220.CrossRefGoogle Scholar
  38. Mia, M. M. A., Biswas, S. K., Urmi, M. C., & Siddique, A. (2015). An algorithm for training multilayer perceptron (MLP) for image reconstruction using neural network without overfitting.Google Scholar
  39. Mokhtarzade, M., & Zoej, M. J. V. (2007). Road detection from high-resolution satellite images using artificial neural networks. International Journal of Applied Earth Observation and Geoinformation, 9, 32–40.CrossRefGoogle Scholar
  40. Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 247–259.CrossRefGoogle Scholar
  41. Nandi, A., & Shakoor, A. (2010). A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology, 110, 11–20.CrossRefGoogle Scholar
  42. Oommen, T., Misra, D., Twarakavi, N. K. C., Prakash, A., Sahoo, B., & Bandopadhyay, S. (2008). An objective analysis of support vector machine based classification for remote sensing. Mathematical Geosciences, 40, 409–424.CrossRefGoogle Scholar
  43. Peng, T., Jermyn, I. H., Prinet, V., & Zerubia, J. (2010). Extended phase field higher-order active contour models for networks. International Journal of Computer Vision, 88, 111–128.CrossRefGoogle Scholar
  44. Platt, J. C. (1999). Using analytic QP and sparseness to speed training of support vector machines. In Advances in neural information processing systems (pp. 557–563).Google Scholar
  45. Poullis, C., & You, S. (2010). Delineation and geometric modeling of road networks. ISPRS Journal of Photogrammetry and Remote Sensing, 65, 165–181.CrossRefGoogle Scholar
  46. Pradhan, B., Jebur, M. N., Shafri, H. Z. M., & Tehrany, M. S. (2016). Data fusion technique using wavelet transform and Taguchi methods for automatic landslide detection from airborne laser scanning data and quickbird satellite imagery. IEEE Transactions on Geoscience and remote sensing, 54(3), 1610–1622.Google Scholar
  47. Priddy, K. L., & Keller, P. E. (2005). Artificial neural networks: an introduction (Vol. 68). SPIE Press.Google Scholar
  48. Quinlan, J. R. (2014). C4. 5: Programs for machine learning. Elsevier.Google Scholar
  49. Rottensteiner, F. (2009). Status and further prospects of object extraction from image and laser data. In 2009 Joint Urban Remote Sensing Event (pp. 1–10).Google Scholar
  50. Rottensteiner, F. (2010). Automation of object extraction from LiDAR in urban areas. In 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 1343–1346).Google Scholar
  51. Saghebian, S. M., Sattari, M. T., Mirabbasi, R., & Pal, M. (2013). Ground water quality classification by decision tree method in Ardebil region, Iran. Arabian Journal of Geosciences, 7, 4767–4777.CrossRefGoogle Scholar
  52. Samadzadegan, F., & Bigdeli, B. (2009). Combining multiple classifiers for automatic road extraction from lidar data.Google Scholar
  53. Sameen, M. I., Pradhan, B., Shafri, H. Z., Mezaal, M. R., & bin Hamid, H. (2017). Integration of ant colony optimization and object-based analysis for LiDAR data classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(5), 2055–2066.Google Scholar
  54. Sameen, M. I., & Pradhan, B. (2017a). A two-stage optimization strategy for fuzzy object-based analysis using airborne LiDAR and high-resolution orthophotos for urban road extraction. Journal of Sensors, 2017.Google Scholar
  55. Sameen, M. I., & Pradhan, B. (2017b). A simplified semi-automatic technique for highway extraction from high-resolution airborne LiDAR data and orthophotos. Journal of the Indian Society of Remote Sensing, 45(3), 395–405.Google Scholar
  56. Soliman, O. S. & Mahmoud, A. S. (2012). A classification system for remote sensing satellite images using support vector machine with non-linear kernel functions. In 2012 8th International Conference on Informatics and Systems (INFOS) (pp. BIO-181–BIO-187).Google Scholar
  57. Song, M., & Civco, D. (2004). Road extraction using SVM and image segmentation. Photogrammetric Engineering & Remote Sensing, 70, 1365–1371.CrossRefGoogle Scholar
  58. Vaa, T., Penttinen, M., & Spyropoulou, I. (2007). Intelligent transport systems and effects on road traffic accidents: State of the art. IET Intelligent Transport Systems, 1, 81.CrossRefGoogle Scholar
  59. Vapnik, V. (2013). The nature of statistical learning theory. Berlin: Springer.Google Scholar
  60. Wan, Y., Shen, S., Song, Y., & Liu, S. (2007). A road extraction approach based on fuzzy logic for high-resolution multispectral data. In Fourth International Conference on Fuzzy Systems and Knowledge Discovery, 2007 (FSKD 2007) (pp. 203–207).Google Scholar
  61. Wang, G., Zhang, Y., Li, J., & Song, P. (2011). 3D road information extraction from LIDAR data fused with aerial-images. In 2011 IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services (ICSDM) (pp. 362–366).Google Scholar
  62. White, R. A., Dietterick, B. C., Mastin, T., & Strohman, R. (2010). Forest roads mapped using LiDAR in steep forested terrain. Remote Sensing, 2, 1120–1141.CrossRefGoogle Scholar
  63. Wiedemann, C., Heipke, C., Mayer, H., & Hinz, S. (1998). Automatic extraction and evaluation of road networks from MOMS-2P imagery. International Archives of Photogrammetry and Remote Sensing, 32, 285–291.Google Scholar
  64. Yang, G. Y. C. (1995). Geological mapping from multi-source data using neural networks: Geomatics engineering. University of Calgary.Google Scholar
  65. Yao, W., & Han, M. (2011). Remote sensing image classification with parameter optimized support vector machine based on evolutionary computation. In 2011 Fourth International Workshop on Advanced Computational Intelligence (IWACI) (pp. 290–294).Google Scholar
  66. Zhan, Y., & Shen, D. (2005). Design efficient support vector machine for fast classification. Pattern Recognition, 38, 157–161.CrossRefGoogle Scholar
  67. Zhao, J., & You, S. (2012). Road network extraction from airborne LiDAR data using scene context. In 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (pp. 9–16).Google Scholar
  68. Zhao, Y., & Zhang, Y. (2008). Comparison of decision tree methods for finding active objects. Advances in Space Research, 41, 1955–1959.CrossRefGoogle Scholar
  69. Zhao, J., You, S., & Huang, J. (2011). Rapid extraction and updating of road network from airborne LiDAR data. In 2011 IEEE Applied Imagery Pattern Recognition Workshop (AIPR) (pp. 1–7).Google Scholar
  70. Zhou, W. (2013). An object-based approach for urban land cover classification: Integrating LiDAR height and intensity data. IEEE Geoscience and Remote Sensing Letters, 10, 928–931.CrossRefGoogle Scholar
  71. Zhu, P., Lu, Z., Chen, X., Honda, K., & Eiumnoh, A. (2004). Extraction of city roads through shadow path reconstruction using laser data. Photogrammetric Engineering & Remote Sensing, 70, 1433–1440.CrossRefGoogle Scholar
  72. Zhu, H., Yang, X., & Luo, Y. (2009). Classification of urban remote sensing image based on support vector machines. In 2009 17th International Conference on Geoinformatics (pp. 1–6).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS)University of Technology SydneySydneyAustralia
  2. 2.Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS)University of Technology SydneySydneyAustralia

Personalised recommendations